首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

2.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

3.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb2O8 ceramic shows a high sintering temperature of about 1250 °C. However, it was found that the addition of BaCu(B2O5) lowered the sintering temperature of ZnTiNb2O8 ceramics from above 1250 °C to 950 °C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb2O8 ceramics sintered at 950 °C afforded excellent dielectric properties of ?r = 32.56, Q × f = 20,100 GHz (f = 5.128 GHz) and τf = −64.87 ppm/°C. These represent very promising candidates for LTCC dielectric materials.  相似文献   

4.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. The prepared Nd(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. It is found that low-level doping of B2O3 (up to 0.75 wt.%) can significantly improve the density and dielectric properties of Nd(Co1/2Ti1/2)O3 ceramics. Nd(Co1/2Ti1/2)O3 ceramics with additives could be sintered to a theoretical density higher than 98.5% at 1320 °C. Second phases were not observed at the level of 0.25-0.75 wt.% B2O3 addition. The temperature coefficient of resonant frequency (τf) was not significantly affected, while the dielectric constants (?r) and the unloaded quality factors Q were effectively promoted by B2O3 addition. At 1320 °C/4 h, Nd(Co1/2Ti1/2)O3 ceramics with 0.75 wt.% B2O3 addition possesses a dielectric constant (?r) of 27.2, a Q × f value of 153,000 GHz (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of 0 ppm/°C. The B2O3-doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

5.
Polycrystalline and nanometer-sized CoFe2O4 ferrite thin films are successfully synthesized using glucose as an addition agent. The thermal gravimetric/differential thermal analyzer, X-ray diffractometer, electron diffraction, scanning electron microscope, atomic force microscope and vibrating sample magnetometer are used to characterize the effects of the calcination temperature on the crystalline structure, morphology and magnetic properties of the Co-ferrite thin films. CoFe2O4 ferrite thin films have a single phase inverse spinel structure and are crystallized at and above 300 °C which is much lower than the required temperature in the traditional ceramic method (about 500-600 °C). Co-ferrite thin films annealed at relative low temperature of 400 °C show very small particle size with average of 32 nm and excellent magnetic properties for information storage applications.  相似文献   

6.
Polycrystalline BaTi2O5 (BT2) was prepared by pressureless sintering in air using BaCO3 and TiO2 as starting materials. XRD results of the calcined powder showed BaCO3 and TiO2 reacted completely after being calcined above 950 °C, showing a mixture of BaTiO3 (BT), BT2, BaTi4O9 and Ba4Ti13O30. A small amount of ZrO2 (less than 0.1 wt%) was effective to prepare BT2 in a single phase and the second phase of BT and B6T17 increased with ZrO2 content. BT2 sintered body in a single phase was obtained at 1175-1300 °C when ZrO2 content was 0.08 wt%. The maximum permittivity of BT2 sintered body was 340 at the Curie temperature (Tc) of 463 °C and the frequency of 100 kHz.  相似文献   

7.
The Ba3ZnTa2O9 (BZT) and Ba3MgTa2O9 (BMT) ceramics, a family of A3B2+B5+2O9 complex perovskites, are extensively utilized in mobile based technologies due to their intrinsic high unloaded quality factor, high dielectric constant and a low (near-zero) resonant frequency temperature coefficient at microwave frequencies. The preparation conditions as well as size and nature of B cations have a profound effect on the final dielectric properties. In this article, we report the effect of Nb5+ at the Ta5+ site on the BMT structure prepared at four synthesis temperatures (1300, 1400, 1500 and 1600 °C). The analysis has been carried out using the Rietveld technique on the X-ray powder diffraction data. Results suggest that both the preparation temperatures and Nb5+ content have significant effect on the ordering of B cations in the Ba3Mg(Ta1−xNbx)2O9 solid solution. A disordered (cubic) structure is preferred by the 1300 °C compounds. The weight percentage of the ordered (trigonal) phase escalates, for a given composition, with increasing calcination temperature. A fully ordered trigonal arrangement exists only for x = 0.0 and 0.2 compounds calcined at 1600 °C, and the rest are biphasic (cubic and trigonal). The increase in the cubic fraction upon Nb5+ augmentation suggests that the solid solution leans more toward the disordered structural arrangement of B2+ and B5+ cations.  相似文献   

8.
The effects of B2O3 addition on the microwave dielectric properties and the microstructures of (1−x)LaAlO3-xSrTiO3 ceramics prepared by conventional solid-state routes have been investigated. Doping with 0.25 wt.% B2O3 can effectively promote the densification and the microwave dielectric properties of (1−x)LaAlO3-xSrTiO3 ceramics. It is found that LaAlO3-SrTiO3 ceramics can be sintered at 1400°C due to the liquid phase effect of a B2O3 addition observed by scanning electronic microscopy (SEM). The dielectric constant as well as the Q×f value decreases with increasing B2O3 content. At 1460°C, 0.46LaAlO3-0.54SrTiO3 ceramics with 0.25 wt.% B2O3 addition possesses a dielectric constant (εr) of 35, a Q×f value of 38,000 (at 7 GHz) and a temperature coefficients of resonant frequency (τf) of −1 ppm/°C.  相似文献   

9.
In this paper we report on the synthetic investigation of single-crystalline aluminum borate (Al4B2O9) nanowires in large scale by a direct calcination of a precursor powder made of Na2B4O7·10H2O and Al (NO3)3·9H2O at a low temperature of 850 °C. The nanowires, with the diameter of 20-40 nm and the length up to several micrometers, possess smooth surfaces and uniform sizes along the entire wire. The growth mechanism of the nanowires is attributed to a solid-liquid-solid process, which controls the nanowire morphology.  相似文献   

10.
The structural properties of La2O3 and Al2O3-La2O3 binary oxides prepared by sol-gel were studied by XRD, HRTEM and UV-vis. The binary oxides with high lanthana contents show an amorphous structure after calcination at 650 °C. At calcination temperatures higher than 1000 °C there is a phase transformation from the amorphous state to the crystalline LaAlO3 with a perovskite structure. The structure of La2O3 is consistent with the hexagonal system; however, some crystalline microdomains with a monoclinic structure were detected by HRTEM. Islands of La2O3 and LaAl11O18 phases were detected at high lanthana concentration in the binary oxide. The modification in the coordination shell of the Al3+ cations due to the interaction with La3+ cations confirms the formation of phases with a perovskite structure and the presence of islands of the LaAl11O18 phase.  相似文献   

11.
Thermal solid-solid interactions in cobalt treated MoO3/Al2O3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH)3, ammonium molybdate and cobalt nitrate solutions, drying at 100 °C then calcination at 300, 500, 750 and 1000 °C. The amount of MoO3, was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co3O4. Surface and catalytic properties of various solid samples precalcined at 300 and 500 °C were studied using nitrogen adsorption at −196 °C, conversion of isopropanol at 200-500 °C and decomposition of H2O2 at 30-50 °C.The results obtained revealed that pure mixed solids precalcined at 300 °C consisted of AlOOH and MoO3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO3 and CoMoO4 compounds. The rise in calcination temperature to 500 °C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al2O3. The further increase in precalcination temperature to 750 °C led to the formation of Al2(MoO4)3, κ-Al2O3 besides CoMoO4 and un-reacted portion of Co3O4 in the samples rich in cobalt oxide. Pure MoO3/Al2O3 preheated at 1000 °C composed of MoO3-αAl2O3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO4 and CoAl2O4 compounds.The increase in calcination temperature of pure and variously doped solids from 300 to 500 °C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 °C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 °C increased its catalytic activity in H2O2 decomposition. This increase, measured at 300 °C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 °C, respectively. The increase in the amount of dopant added above this limit decreased the catalytic activity which remained bigger than those of un-treated catalysts. On the other hand, the doping process decreased the catalytic activity of treated solids in isopropanol conversion especially the catalysts precalcined at 300 °C. This treatment modified the selectivities of treated solids towards dehydration and dehydrogenation of reacted alcohol.The activation energies of H2O2 decomposition were determined for pure and variously doped solids. The results obtained were discussed in light of induced changes in chemical composition and surface properties of the investigated system due to doping with cobalt oxide.  相似文献   

12.
Synthesis of BaTi4O9 ceramics by a reaction-sintering process was investigated. The mixture of raw materials for stoichiometric BaTi4O9 were pressed and sintered into ceramics without any calcination stage involved. Pure BaTi4O9 phases were obtained at 1150-1280 °C. High-sintered density, 98.2-99.5% of theoretical value (4.533 g/cm3), can be obtained for pellets sintered at 1200-1280 °C for 2-6 h. Some rod-shaped grains 3-7 μm in the longitudinal axis appear in pellets sintered at 1230 °C. Both the size and the amount of these rod-shaped grains increase at higher sintering temperature.  相似文献   

13.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

14.
New lanthanum borate (La2O3-B2O3) glasses modified with divalent oxides, such as CaO, MgO and ZnO were investigated as potential low temperature dielectrics by understanding compositional dependence of dielectric properties and chemical leaching resistance. Firing behavior, such as densification and crystallization, depended strongly on the glass composition and is found to influence the resultant dielectric performance. Specifically, the dielectric composition of 20ZnO-20La2O3-60B2O3 glass with 40 wt% Al2O3 as a filler showed distinct enhancements of dielectric properties, i.e., k ∼ 8.3 and Q ∼ 1091 at the resonant frequency of 17.1 GHz, as a result of 850 °C firing. The result was believed related to earlier densification and unexpected evolvements of ZnAl2O4 and La(BO2)3 phases during firing. The Mg-containing glass sample was most stable in strong acid solutions and did not show any significant changes in microstructure even after 300 min exposure. The Ca-containing glass sample was not regarded as a promising candidate for low temperature dielectrics from the observed low quality factor and weak chemical durability.  相似文献   

15.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

16.
High purity tetragonal BaTiO3 powders consisted of uniform particles of ca. 150 nm in diameter were synthesized by a composite-hydroxide-mediated approach at 240 °C using a novel hydrothermal reaction apparatus with a rolling system. The product showed sinterability superior to the commercial powder, i.e., it could be sintered to full theoretical density at 1200 and 1100 °C without an additive and with 0.3 wt% of Li2CO3-0.04 wt% of V2O5 mixed sintering aid, respectively. The sintered body of the product also showed piezoelectric properties superior to the commercial one.  相似文献   

17.
In this paper, a modified sol-gel method was employed to prepare nanostructured MgAl2O4 spinel powders doped with Tb3+ ions and thermally treated at 700 and 1000 °C for 3 h. The structural properties of the prepared at 700 and 1000 °C powders where characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to obtained XRD patterns the formation of single-phase spinels after calcination was confirmed. The XRD analyses demonstrated that the powders were single-phase spinel nanopowders with high crystallite dispersion. The Rietveld method was applied to calculate lattice parameters. The averaged spinel particle size was determined to be ∼10 nm for calcination at 700 °C and ∼20 nm at 1000 °C. The emission and excitation spectra measured at room and low temperature (77 K) for the samples calcined at 700 and 1000 °C demonstrated characteristic spectra of Tb3+ ions. The effect of MgAl2O4:Tb3+ grain sizes on luminescence properties was noticed.  相似文献   

18.
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.  相似文献   

19.
Nanocrystalline Gd2O3:Eu scintillators were successfully synthesized using a hydrothermal method and subsequent calcination treatment in the electrical furnace as an X-ray to visible light conversion material for an indirect X-ray image sensor. In this work, various Gd2O3:Eu scintillators were prepared in accordance with different synthesis conditions such as doped-Eu concentration, different calcination temperatures of 600-1400 °C and calcination time of 1-10 h. The transition of morphology from nanorods to particles was observed as the calcination temperature of Gd2O3:Eu scintillator increased. And the phase transformation of the sample from cubic to monoclinic structure was discovered at 1300 °C calcination temperature. In addition, scintillation properties such as luminescent spectra and light intensity under 266 nm UV illumination were measured as a function of calcination condition of as-synthesized Gd2O3:Eu powder. The nanocrystalline Gd2O3:Eu scintillator with a strong red light emission at near 611 nm wavelength under photo- and X-ray excitation will be employed for its potential X-ray image sensor applications in the future.  相似文献   

20.
Ba4MgTi11O27 microwave dielectric ceramic was investigated using X-ray diffraction, scanning electron microscopy and dielectric measurement. The pure Ba4MgTi11O27 ceramic shows a high sintering temperature (∼1275 °C) and good microwave dielectric properties as Q × f of 19,630 GHz, ?r of 36.1, τf of 14.6 ppm/°C. It was found that the addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1275 to 925 °C, and does not induce much degradation of the microwave dielectric properties. The BCB-doped Ba4MgTi11O27 ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号