首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the flash event (FE) on microcrack healing behavior in 8 mol% yttria-stabilized zirconia was examined at healing temperatures of 1040 and 1230°C under the direct and alternating (DC and AC) electric fields. The crack healing behavior changed depending on the factors of the electric field, healing temperature, and crack length. Although the crack healing proceeded with the temperature, the healing rate increased with the crack length, suggesting that the external energy stored as crack surface energy would provide a driving force for the crack healing. Although the crack healing occurs even under the static annealing without the electric field, the healing rate was accelerated by FE significantly more under the AC field than under the DC field. The microcracks with a length of ≈20 μm were fully healed at 1230°C only for 10 min by the FE treatment under the AC field, and the flash healing behavior was four times faster than that of the static annealing. These results suggest that the enhanced healing behavior cannot be explained only by thermal effects, and the accelerated diffusivity caused additionally by nonthermal effect under FE might contribute to the enhanced healing behavior, especially in the AC electric field.  相似文献   

2.
Crack formation patterns in Laponite gel are known to be strongly affected by electric fields produced by a DC (direct current) source. It can be shown that AC (alternating current) fields produce equally remarkable patterns in a radially symmetric set-up. The character of the pattern depends crucially on the field strength. A significant feature observed is the bending of radial cracks, with the curvature increasing as field strength is increased. Voltages of 20 to 70 V have been applied and several features of the resulting patterns quantified. Striations on the fracture surfaces and crack speeds are also studied.  相似文献   

3.
Electric-field-induced fatigue crack growth in ferroelectric ceramic PZT-5 with precracks was investigated. The experimental results showed that there were two distinct characteristics in the crack growth under electric loading. Under low electric loads, microcracks located ahead of the main crack emerged and grew and, as a result, impeded the growth of the main crack. On the other hand, under high electric loads, microcracks were absent, and the main crack was the only mode of fatigue cracking. The main crack grew macroscopically along the original path perpendicular to the electric field. Microscopically, the crack grew along the grain boundaries and grain breakaway was observed. The crack growth rate was nonlinearly related to the cyclic electric load. Similar to mechanical fatigue, there existed a crack growth threshold in the applied electric-field amplitude below which the crack ceased to grow. A steady crack growth occurred when the applied electric field exceeded this threshold. An empirical model for crack growth was obtained. Domain-switching effect and fracture-mechanics concepts were used to explain the observed crack closure and crack growth under electric loads.  相似文献   

4.
Electrically induced fatigue crack growth is an important degradation mechanism for ferroelectric devices. Reliability concerns for ferroelectric devices place stringent demands for ferroelectric materials. In situ observation of electrically induced fatigue crack growth was carried out for ferroelectric single crystals under alternating electric field. Electrically induced fatigue crack growth was observed both below and above the coercive field. Crack closure and open behavior were observed together with 90° ferroelectric domain switching during the electric cycling. The crack propagation behavior is a repeated process of continuous but small increments followed by a sudden increase in the crack length. It was suggested that the electric boundary condition along the crack face, from its mouth to its tip, is a variation from the impermeable to the permeable state. The gradual attainment of an impermeable crack tip after an incubation period of field cycling causes the observed jump in crack propagation.  相似文献   

5.
This paper investigates experimentally and analytically the cyclic fatigue crack growth in piezoelectric ceramics under electromechanical loading. Cyclic crack growth tests were conducted on lead zirconate titanate (PZT) ceramics subjected to dc electric fields, and a finite element analysis was used to calculate the maximum energy release rate for the permeable crack model. Based on bending experiments using single-edge precracked-beam specimens, cyclic fatigue crack growth rates are found to be sensitive to the maximum energy release rate and applied dc electric fields. Possible mechanisms for crack growth were discussed by scanning electron microscope examination of the fracture surface of the PZT ceramics.  相似文献   

6.
Crack propagation under cyclic electric loading was studied in two non-commercial compositions of lead–zirconate–titanate and compared to earlier results from a commercial composition. These materials were chosen to provide a well-defined variation in crystal structure, ranging from rhombohedral to tetragonal, including a composition from the morphotropic phase boundary. The results are presented in terms of crack propagation as a function of various electric load amplitudes. While the crack propagation rates were of the same order of magnitude in all three compositions, fracture occurred in an either trans- or intergranular manner with crack extension either in the form of a singular crack, a microcrack zone or with extensive secondary cracking. These differences in crack propagation are discussed in the context of different piezoelectric material properties.  相似文献   

7.
This paper describes an experimental and analytical study on the dynamic fatigue behavior of cracked piezoelectric ceramics under AC electric fields. Constant load-rate testing was conducted in three-point bending with the single-edge precracked-beam specimens. The crack was created normal to the poling direction. The effects of AC electric fields and loading-rate on the fracture load were examined. A phenomenological model of domain wall motion was also used in finite element computation, and the energy release rate for the permeable crack model was calculated. The effect of AC electric fields on the critical energy release rate was then examined. The results suggest that (1) the fracture load of PZT ceramics decreases as the load-rate decreases; (2) an overall decrease in the fracture load occurs when testing under AC electric fields; and (3) the critical energy release rate is not very affected by the AC electric fields.  相似文献   

8.
In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.  相似文献   

9.
New data sets of crack propagation in lead-zirconate-titanate DCB specimens under cyclic electric loading combined with a constant mechanical load have been obtained. Both an increasing mechanical load as well as an increasing field amplitude resulted in an enhanced crack propagation rate. The experiment was modelled with a Finite Element Analysis that used special crack tip elements and assumed a finite permeability of the crack. The calculations revealed a dielectric crack closure effect, explaining the experimentally observed threshold of fatigue crack growth for the electric load. Fracture quantities suitable for cyclic loading by electric fields above the coercive field were discussed and a Mode-IV intensity factor considered as appropriate. The resulting correlations were applied to the experimental results and a power law relationship for the crack growth rate versus the range of the Mode-IV intensity factor was found.  相似文献   

10.
This paper describes an experimental and analytical study on the static fatigue behavior of piezoelectric ceramics under electromechanical loading. Static fatigue tests were carried out in three-point bending with the single-edge precracked-beam specimens. The crack was created perpendicular to the poling direction. Time-to-failure under different mechanical loads and dc electric fields were obtained from the experiment. Microscopic examination of the fracture surface of the piezoelectric ceramics was performed as well. A finite element analysis was also made, and the applied energy release rate for the permeable crack model was calculated. The effect of applied dc electric fields on the energy release rate versus lifetime curve is examined. The most important conclusion we reach is that the lifetimes for the piezoelectric specimens under a positive electric field are much shorter than the failure times of specimens under a negative electric field for the same mechanical load level.  相似文献   

11.
Electrical resistivity (ER) measurements are a possible health monitoring technique for ceramic matrix composite components in future aerospace applications. In order to use ER measurements to detect and identify damage, it is necessary to understand how each specific damage state will affect the ER response. In this study, finite element models are developed and applied to quantify the effect of specific damage states on the ER response in a melt-infiltrated silicon carbide (SiC) fiber-reinforced SiC composite. The ER of several damage states are calculated by simulating the electric current flow through the damaged microstructure. This is achieved by performing the numerical solution of the steady-state conservation of charge density equation. Numerical results reveal the effect of various cracking features on the ER response such as type of cracking, extent of cracking, crack density and fiber/matrix debonding.  相似文献   

12.
Crack deflection can occur in a specimen subject to a stress gradient of high tensile stresses near the surface which decreases with increasing depth. Such a stress gradient can be induced by strain incompatibilities. These can for example arise under electric fields between the electroded and external regions of a piezoelectric material. Such incompatibilities have been realized in thin rectangular model specimens from PZT-piezoelectric ceramics with top and bottom partial electrodes. Under an electric field, controlled crack propagation has been observed in-situ in an optical microscope. The crack paths are reproducible with very high accuracy. Small electrode widths lead to straight cracks with two transitions between stable and unstable crack growth, while large electrode widths result in curved cracks with four transitions. Poling the specimen prior to the experiment alters the crack path and introduces an anisotropy in the R-curve behavior as well as in the achievable strain mismatch. The crack path selection and crack length can be explained by means of a qualitative fracture mechanics analysis.  相似文献   

13.
Experiments were carried out to investigate filtration characteristics of an electrostatic precipitator (ESP) with alternating and direct electric field corona charger. Potassium Sodium Tartrate Tetrahydrate as the material was used to generate polydisperse submicron aerosols by using Constant Output Atomizer. The results indicated that the aerosol penetration through the ESP decreased as applied voltage increased. The maximum collection efficiency of either alternating or direct electric field was more than 98%, though the applied voltage of alternating electric field was higher than that of direct electric field. However, from the viewpoint of power consumption, the direct electric field had higher power consumption rate than alternating electric field at similar collection efficiency. For example, when the 0.2 μm particle penetration was about 4%, the power consumptions of alternating and direct electric field were 16 watt and 18 watt, respectively. Hence the separation quality of alternating electric field was better than that of direct electric field. Moreover, considerably lower ozone concentration was found in alternating electric field ESP, compared to direct electric field.  相似文献   

14.
Electromagnetic shielding materials are widely used in alternating electric fields. As a result, the alternating current (AC) conductivity is vital to the electromagnetic shielding effectiveness. In this article, we designed a kind of test method about powder conductive properties and studied AC conductivity of silver powder and the silicon rubber composite, which presented that a sharp peak of impedance would take place in the both systems during the high frequent electric flow. Through the design of the equivalent circuit and the test of the system parameters such as the dielectric constant, this article displayed the impedance model of the silver powder and the silicon rubber composite. The calculated results and the experimental data match very well. POLYM. COMPOS. 37:1122–1127, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
The flaw propagation in Lead zirconate titanate (PZT) multilayer ceramics under mechanical load was examined using impedance spectroscopy and three‐point bending studies. Initial flaws were generated by applying a positive sinusoidal electric field to the specimens. The cracks were sequentially propagated and after the release of the external mechanical load, impedance spectroscopy was conducted. The shift in the resonance frequencies and the subresonance height of the impedance spectroscopy were used as a measure of flaw extension. A functional dependence of the resonance frequency and the phase shift on the crack length was found. The crack propagation was studied on flaws starting at the positive and negative electrode, respectively. The maximum fracture strength, as well as the crack path, depends on the electrode potential. The variation in the fracture strength was caused by different observed fracture mode: interface cracking, matrix‐cracking, or a combination of both. The morphology of the fracture surfaces was ascribed to a textured microstructure, which is created by the sample processing, for example, by the poling process. A modified poling procedure with a lower poling temperature was analyzed, which yielded a reduction of the anisotropy of the electrode strength. Impedance spectroscopy was found to be a reliable measurement tool for automated flaw detection in PZT multilayer ceramics.  相似文献   

16.
《Ceramics International》2016,42(5):6072-6079
Due to excellent chemical stability, high rigidity, superior corrosion and wear resistance, aluminum oxynitride (AlON) has been considered as one of most promising candidate ceramic materials in high-performance structural, advanced abrasives and refractory fields. However, it usually exhibited relatively low flexural strength and poor fracture toughness. The study is aimed to develop silicon carbide (SiC) and zirconium nitride (ZrN) nano-particulate reinforced AlON composites with improved mechanical properties and fracture resistance via a hot-press sintering process. It was found that the addition of ZrO2 nanoparticles would be transformed into ZrN during sintering. Due to the pinning effect of SiC and ZrN nano-particles positioned at grain boundaries of micro-sized AlON particles, the presence of SiC and ZrN nano-particles resulted in the reduction of both porosity and grain size, and a change of fracture mode from intergranular cracking in AlON to intragranular cracking in composites. With presence of 8 wt% SiC and 5.2 wt% ZrN nano-particles, the relative density, microhardness, Young’s modulus, flexural strength and fracture toughness increased. Different toughening mechanisms including crack bridging, crack branching and crack deflection were observed, thus effectively increasing the crack propagation resistance and leading to a considerable improvement in flexural strength and fracture toughness.  相似文献   

17.
The effect of an electric field on domain switching and fatigue induced crack nucleation and growth in a piezoelectric material of nominal composition Pb(Zr0.5, Ti0.5)O3 has been investigated. The ceramic was subjected to localised static and cyclic electric fields, which were applied via pairs of closely spaced surface-mounted electrodes, while simultaneously imaging the microstructure in the SEM. Electric field–polarisation hysteresis loops were also collected from the local region using the same electrodes.Domain wall mobility was observed above a threshold electric field strength, as was microcracking. Cracks were seen to nucleate at grain boundaries, and were sometimes associated with microstructural features, such as pores. Crack propagation was mainly intergranular, and occurred preferentially in a direction parallel to the local field direction. Transgranular fracture was also observed, with the crack path being influenced by interaction with domain boundaries. Factors affecting domain switching and crack propagation are discussed in the context of the locally applied electric field.  相似文献   

18.
The degradation of ac and dc conductivity, field dependence of conductivity, and activation energy were studied for paraelectric BaTiO3 ceramic subjected to high alternating electric fields at 150°C. The time to failure for disks of three thicknesses was determined as the 3.5 power of field strength and a model was developed relating degradation to electrostrictive forces.  相似文献   

19.
Effects are investigated of constant and alternating electric and of magnetic fields on the soot formation in plane diffusional acetylene—and benzene—oxygen low-pressure counterflow flames. When electric fields are applied to the flame, reduction in the soot outflow and formation in the flame of dense aggregates shaped like laminae and droplets were observed. It was shown that the soot aggregates possess a skeleton. Alternating electric fields imposed on the flame inhibit skeleton formation and move the aggregate formation process to the later stages of soot aerosol formation, which leads to the production of dense aggregates and reduces the soot outflow. It is concluded that the observed smallest carbon particles (below 1 nm) are the basic structural soot units. In flames permeated by a magnetic field, the structural soot units form chains, from which domains are formed.Dnepropetrovsk. Translated from Fizika Goreniya i Vzryva, Vol. 29, No. 3, pp. 100–105, May–June, 1993.  相似文献   

20.
包忠有  余学文 《陶瓷学报》2007,28(3):205-209
研究了含界面边裂纹的不同压电介质组成的复合材料在反平面荷载和平面内电场作用下的电弹场,得到了级数形式的基本解和应力强度因子,最后用边界配置法求解了应力强度因子。结果表明,在外加剪切荷载的作用下,应力强度因子与外加电场无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号