首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two genes, mutations in which result in the phenotype of tuberous sclerosis (TSC), have recently been cloned. TSC2 on chromosome 16p13.3 encodes the protein tuberin, which appears to have growth regulating properties. TSC1 on chromosome 9q34 encodes hamartin which, as yet, has no specified cellular functions. Polyclonal antibodies were raised to synthetic peptides representing portions of tuberin and hamartin and used in immunoblots and immunohistochemical studies to localize the proteins in surgically resected neocortical tubers from four TSC patients. On Western blots of autopsy brain specimens, K-562 cell, and NT2 lysates, each antibody labelled a single band at the expected molecular weight. In immunohistochemical protocols on paraffin embedded tissue, antibodies to both tuberin and hamartin prominently labelled atypical and dysmorphic neuroglial cells that are a defining feature of TSC tubers. Some abnormal cells within cortical tuber sections were labelled with both tuberin and hamartin antisera. Our results suggest that tuberin and hamartin are both robustly expressed in similar populations of neuroglial cells of TSC tubers, even in the presence of TSC1 or TSC2 germline mutations. The roles of these gene products in normal and abnormal cortical development, tuber pathogenesis and the generation of seizures remain to be defined.  相似文献   

3.
Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by seizures, mental retardation, and hamartomatous lesions. Although hamartomas can occur in almost any organ, they are most common in the brain, kidney, heart, and skin. Allelic loss or loss of heterozygosity (LOH) in TSC lesions has previously been reported on chromosomes 16p13 and 9q34, the locations of the TSC2 and TSC1 genes, respectively, suggesting that the TSC genes act as tumor-suppressor genes. In our study, 87 lesions from 47 TSC patients were analyzed for LOH in the TSC1 and TSC2 chromosomal regions. Three findings resulted from this analysis. First, we confirmed that the TSC1 critical region is distal to D9S149. Second, we found LOH more frequently on chromosome 16p13 than on 9q34. Of the 28 patients with angiomyolipomas or rhabdomyomas, 16p13 LOH was detected in lesions from 12 (57%) of 21 informative patients, while 9q34 LOH was detected in lesions from only 1 patient (4%). This could indicate that TSC2 tumors are more likely than TSC1 tumors to require surgical resection or that TSC2 is more common than TSC1 in our patient population. It is also possible that small regions of 9q34 LOH were missed. Lastly, LOH was found in 56% of renal angiomyolipomas and cardiac rhabdomyormas but in only 4% of TSC brain lesions. This suggests that brain lesions can result from different pathogenic mechanisms than kidney and heart lesions.  相似文献   

4.
During our studies of DNA fingerprinting of tumours of the pancreas and papilla (ampulla) of Vater, using arbitrarily primed polymerase chain reaction (AP-PCR), we noticed two bands showing a decreased intensity in six of ten ampullary tumours with respect to matched normal tissues. Those bands were both assigned to chromosome 5. Such a finding was somewhat in contrast with the reportedly low frequency of APC gene mutations in ampullary cancers, located at chromosome 5q21, and suggested that loci different from that of APC might be the target of chromosome 5 allelic losses (LOH) in these tumours. Therefore, we analysed chromosome 5 LOH in a panel of 27 ampullary tumours, including eight adenomas, four early- and 15 advanced-stage cancers, using 16 PCR-amplified CA microsatellite polymorphic markers spanning the entire chromosome. Nineteen cases (70%) showed LOH, and the interstitial deletions found in these tumours described two smallest common deleted regions, in which putative suppressor genes might reside. They were at 5q13.3-q14 and at 5q23-q31 respectively, which correspond to those found in gastric tumours. In addition, the presence of 5q LOH in six of eight adenomas and in three of four early-stage cancers suggests that such phenomena occur at early stages of neoplastic progression of the ampullary epithelium.  相似文献   

5.
The short area of chromosome 17 is a frequent target for deletions in human tumors, including breast cancer. We have investigated by restriction fragment polymorphism analysis the pattern of loss of heterozygosity (LOH) at four loci on 17p13.1-17pter in a panel of 110 primary human breast carcinomas. A copy of the p53 gene was lost in 23% of the informative cases. Point mutations in the p53 gene were statistically associated with LOH at the same locus (p = 0.003) but not at other loci on 17p13.3-17pter. A second region bordered by the loci D17S5/D17S28 (17p13.3) and D17S34 (17pter) is also affected by LOH, independent of point mutations in the p53 gene. We propose the presence of a second tumor suppressor gene within this region. In support of this hypothesis is the significant association (p = 0.005) between LOH at the D17S5/D17S28, but not at the TP53 or D17S34 loci, and tumors having a high S-phase index.  相似文献   

6.
Tuberous sclerosis complex is an autosomal dominant disorder with loci on chromosome 9q34 (TSC1) and chromosome 16p13.3 (TSC2). The TSC2 gene has been isolated. To date, only a small number of intragenic deletional and point mutations have been detected, almost exclusively in sporadic (no family history) cases. With the exception of a single parent/offspring pair, there have been no published reports of mutations in extended multigenerational chromosome 16-linked TSC2 families. For our TSC studies we ascertained and sampled a four-generation African-American TSC family that shows a high likelihood for linkage to chromosome 16 (z=1.53). Using single-strand conformation polymorphism analysis we identified a 4590/4591delC mutation in exon 34. The 4590/4591delC causes a frameshift mutation resulting in the creation of a premature stop codon. In addition, we have detected a 542del4 polymorphism in the two partially overlapping polyadenylation signals in exon 40 that segregates in the family. The polymorphism has been detected in six of 72 African-American control chromosomes examined, and has not been detected in 80 Caucasian control chromosomes examined.  相似文献   

7.
Tuberous sclerosis (TSC) is an autosomal dominant syndrome that is linked to two genetic loci: TSC1 (9q34) and TSC2 (16p13). Brain manifestations such as cortical tubers and subependymal hamartoma/giant cell astrocytomas are major causes of TSC-related morbidity. In this study, we describe the central nervous system involvement in a unique rodent model of tuberous sclerosis. The Eker rat carries a spontaneous germline mutation of the TSC2 gene and is predisposed to multiple neoplasia. In a series of 45 adult Eker carriers (TSC2 +/-), three types of focal intracranial lesions were found, of which the subependymal and subcortical hamartomas were most prevalent (65%). There exist remarkable phenotypic similarities between the Eker rat and human subependymal lesions. Our study indicates that the predominant cellular phenotype of the subependymal hamartomas is astroglial and suggests that the neuronal contribution within these lesions is, in part, the result of pre-existing myelinated axons. The hamartomas did not show evidence of loss of the wild-type TSC2 allele; it remains to be determined whether TSC2 inactivation is necessary for their pathogenesis. This genetically-defined rodent model may be useful in elucidating the molecular and developmental basis of the subependymal giant cell astrocytoma in humans.  相似文献   

8.
9.
Deletions involving chromosome 10q23 occur frequently in prostatic carcinomas. Recently, a novel tumour suppressor gene, PTEN, mapping to this interval, has been identified. Mutation or deletion of PTEN has been observed in a proportion of prostate cancer cell lines; however, primary prostate carcinomas have not been studied. We have investigated the involvement of PTEN in primary prostatic adenocarcinomas using a panel of 51 matched normal and prostate tumour DNAs. We first determined the proportion of tumours with allele loss at loci in 10q23 which span the region containing the PTEN gene. Our results show that LOH involving 10q23 is common in primary prostate carcinomas. Twenty-five of 51 (49%) tumours showed loss of heterozygosity (LOH) over the region spanning the PTEN locus. We next directly analysed the PTEN gene for mutations of the coding region using single strand conformation polymorphism (SSCP) and sequence analyses. Of those tumours with LOH, only a single tumour was found to carry a missense mutation in PTEN. No mutations in PTEN were identified in tumours without LOH. Our results suggest either that mutation of PTEN is a late event in prostate tumorigenesis, or that another tumour suppressor gene important in prostate cancer may lie close to PTEN in 10q23.  相似文献   

10.
11.
Detailed deletion mapping of chromosome 6q has shown that the highest percentage of loss of heterozygosity (LOH) is located at 6q25-q27 and suggested that an ovarian cancer associated tumor suppressor gene may reside in this region. To further define the smallest region of common loss, we used 12 tandem repeat markers spanning a region no more than 18 cM, located between 6q25.1 and 6q26, to examine allelic loss in 54 fresh and paraffin embedded invasive ovarian epithelial tumor tissues. Loss of heterozygosity was observed more frequently at the loci defined by marker D6S473 (14 of 32 informative cases, 44%) and marker D6S448 (17 of 40 informative cases, 43%). Detailed mapping of chromosome 6q25-q26 in these tumor samples identified a 4 cM minimal region of LOH between markers D6S473 and D6S448 (6q25.1-q25.2). Loss of heterozygosity at D6S473 correlated significantly both with serous versus non-serous ovarian tumors (P=0.040) and with high grade versus low grade specimens (P=0.023). The results suggest that a 4 cM deletion unit located at 6q25.1-q25.2 may contain the putative tumor suppressor gene which may play a role in the development and progression of human invasive epithelial ovarian carcinomas (IEOC).  相似文献   

12.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant condition characterized by intestinal hamartomatous polyps, mucocutaneous melanin deposition, and increased risk of cancer. Families with PJS from the Johns Hopkins Polyposis Registry were studied to identify the molecular basis of this syndrome and to characterize the pathogenesis of gastrointestinal hamartomas and adenocarcinomas in PJS patients. Linkage analysis in the family originally described by Jeghers in 1949 and five other families confirmed linkage to 19p13.3 near a recently identified gene responsible for PJS. Germ-line mutations in this gene, STK11, were identified in all six families by sequencing genomic DNA. Analysis of hamartomas and adenocarcinomas from patients with PJS identified loss of heterozygosity (LOH) of 19p markers near STK11 in 70% of tumors. Haplotype analysis indicated that the retained allele carried a germ-line mutation, confirming that STK11 is a tumor suppressor gene. LOH of 17p and 18q was identified in an adenocarcinoma but not in hamartomas, implying that allelic loss of these two regions corresponds to late molecular events in the pathogenesis of cancer in PJS. The adenocarcinomas showing 17p LOH also demonstrated altered p53 by immunohistochemistry. None of the 18 PJS tumors showed microsatellite instability, LOH on 5q near APC, or mutations in codons 12 or 13 of the K-ras proto-oncogene. These data provide evidence that STK11 is a tumor suppressor gene that acts as an early gatekeeper regulating the development of hamartomas in PJS and suggest that hamartomas may be pathogenetic precursors of adenocarcinoma. Additional somatic mutational events underlie the progression of hamartomas to adenocarcinomas, and some of these somatic mutations are common to the later stages of tumor progression seen in the majority of colorectal carcinomas.  相似文献   

13.
It is not known whether mutations in the PKD1 gene cause autosomal dominant polycystic kidney disease (PKD) by an activating (gain-of-function) or an inactivating (loss-of-function) model. We analyzed DNA from cyst epithelial cells for loss of heterozygosity (LOH) in the PKD1 region of chromosome 16p13 using microsatellite markers. 29 cysts from four patients were studied. Five cysts from three patients had chromosome 16p13 LOH. Four of the cysts had loss of two chromosome 16p13 markers that flank the PKD1 gene. In two patients, microsatellite analysis of family members was consistent with loss of the wild-type copy of PKD1 in the cysts. In the third patient, 16p13 LOH was detected in three separate cysts, all of which showed loss of the same alleles. Chromosome 3p21 LOH was detected in one cyst. No LOH was detected in four other genomic regions. These results demonstrate that some renal cyst epithelial cells exhibit clonal chromosomal abnormalities with loss of the wild-type copy of PKD1. This supports a loss-of-function model for autosomal dominant PKD, with a germline mutation inactivating one copy of PKD1 and somatic mutation or deletion inactivating the remaining wild-type copy.  相似文献   

14.
Chronic myelocytic leukemia (CML) is a common neoplasm of hematopoietic pluripotent stem cells. Although the evolution from chronic phase to blast crisis (BC) in CML patients is an inevitable clinical feature, little is understood about the mechanisms responsible for the transformation. We have previously performed allelotype analysis in CML BC and have detected frequent loss of heterozygosity (LOH) on the short arm of chromosome 1. To know the common region of LOH where a putative tumor suppressor gene may reside, deletional mapping was performed using 33 microsatellite markers spanning chromosome 1 in 30 patients with CML BC (21 myeloid and 9 lymphoid). DNA was extracted from slides of bone marrow smears or from bone marrow mononuclear cells. In each patient, DNA from chronic phase was analyzed alongside DNA from either their BC or accelerated phase. Allelic loss on 1p was observed in 14 of the 30 individuals (47%): 10 of the 21 myeloid and 4 of the 9 lymphoid BC cases. Serial cytogenetic information was available in 10 cases with LOH on 1p; interestingly, deletions in this region were not detected. Two samples showed LOH at all informative loci on 1p, whereas the other 12 samples showed LOH on at least one but not all loci on 1p. The common region of LOH resided proximal to D1S508 and distal to D1S507 (1p36). Our results suggest that a tumor suppressor gene that frequently plays an important role in the evolution to BC resides on 1p36 in CML.  相似文献   

15.
Loss of heterozygosity (LOH) on chromosome 9 is the most frequent genetic alteration in bladder cancer identified to date, suggesting the presence of key gene(s) for this pathology. In this study, we examined 44 bladder tumors and 21 normal bladder samples for LOH on both arms of chromosome 9. Sixteen microsatellite markers, 12 on the short arm (encompassing 9p21-22) and 4 on the long arm (encompassing 9q33-34), were chosen for their highly frequent alterations in bladder cancer. LOH for at least one marker was identified in 42 tumor samples (95.5%), and 14 tumors (32%) displayed LOH for all informative tested markers. Detailed analysis showed that 2 markers on chromosome 9p (D9S157 and D9S156) had the highest frequencies of allelic loss (about 70%), independent of tumor grade and stage. The same study was performed on the 21 normal bladder mucosa samples: 50% of informative cases presented a single specific LOH at the D9S156 locus. Normal samples showing LOH at this locus were therefore screened with 3 novel microsatellite markers in the 810-kb region incorporating D9S156. Using this marker, we found no further heterozygous loss in this region. This result allows different interpretations of the D9S156 loss in normal bladder mucosa, and suggests that D9S156 may be more an indicator of bladder epithelium impairment than a tumor-initiation marker. Similarly, this unexpected result calls in question the interpretation of LOH studies.  相似文献   

16.
Previously, we have found that the loss of heterozygosity (LOH) was frequently observed on chromosome 6q in acute/lymphoma-type adult T-cell leukemia (ATL), suggesting a putative tumor-suppressor gene for ATL may be present on chromosome 6q. To further define a region containing this gene, we performed fine-scale deletional mapping of chromosome 6q in 22 acute/lymphomatous ATL samples using 24 highly informative microsatellite markers. LOH was found in 9 samples (40. 9%) at 1 or more of the loci examined. Of the 9 samples, 8 shared the same smallest commonly deleted region flanked by D6S1652 and D6S1644 (6q15-21). The genetic distance between these two loci is approximately 4 cM. These results suggest that a putative tumor-suppressor gene on chromosome 6q15-21 probably plays a very important role in the evolution of acute/lymphomatous ATL. Our map provides key information toward cloning the gene.  相似文献   

17.
In the past the term Bartter's syndrome has been used to describe a spectrum of inherited renal tubular disorders with hypokalemic metabolic alkalosis and overlapping and additional clinical and biochemical features. Pathogenesis remained uncertain until recently Gitelman's syndrome, the hypokalemic-hypomagnesemic variant with hypocalciuria, was linked to the gene encoding the thiazide-sensitive Na-Cl-cotransporter (TSC) located on chromosome 16q. Various mutations in the TSC gene were identified in patients with Gitelman's syndrome. To clarify whether different forms of hypokalemic tubular disorders (HTD) represent variable phenotypes of a common genetic defect, we performed linkage analyses in 17 families with different symptoms of HTD with four highly polymorphic chromosome 16 DNA markers closely linked to the TSC gene. Linkage of Gitelman's syndrome to the TSC locus was confirmed in our families with a maximum two-point Lod score Z = 4.70 (theta = 0.001) for marker locus D16S526. Highly negative LOD scores were obtained at this locus in our families with classic Bartter's syndrome (Z = 9.89, theta = 0.001) and hyperprostaglandin E syndrome (Z = -11.24, theta = 0.001). Our data prove that Gitelman's syndrome is genetically distinct from classic Bartter's syndrome and hyperprostaglandin E syndrome. It remains unknown if classic Bartter's syndrome and hyperprostaglandin E syndrome are caused by a common genetic defect.  相似文献   

18.
Carney complex (CC), Peutz-Jeghers syndrome (PJS), Cowden disease (CD), and Bannayan-Zonana syndrome (BZS) share clinical features, such as mucocutaneous lentigines and multiple tumors (thyroid, breast, ovarian, and testicular neoplasms), and autosomal dominant inheritance. A genetic locus has been identified for CC on chromosome 2 (2p16), and the genes for PJS, CD, and BZS were recently identified; genetic heterogeneity appears likely in both CC and PJS. The genes for PJS and CD/BZS, STK11/LKB1 and PTEN, respectively, may act as tumor suppressors, because loss of heterozygosity (LOH) of the PJS and CD/BZS loci has been demonstrated in tumors excised from patients with these disorders. We studied 2 families with CC in whom the disease could not be shown to segregate with polymorphic markers from the 2p16 locus. Their members presented with lesions frequently seen in PJS and the other lentiginosis syndromes. We also tested 16 tumors and cell lines established from patients with CC for LOH involving the PJS and CD/BZS loci. DNA was extracted from peripheral blood, tumor cell lines, and tissues and subjected to PCR amplification with primers from microsatellite sequences flanking the STK11/LKB1 and PTEN genes on 19p13 and 10q23, respectively, and a putative PJS locus on 19q13. All loci were excluded as candidates in both families with LOD scores less than 2 and/or by haplotype analysis. LOH for these loci was not present in any of the tumors that were histologically identical to those seen in PJS. The overall rate of LOH for the PJS and CD/BZS loci in tumors from patients with CC was less than 10%. We conclude that despite substantial clinical overlap among CC, PJS, CD, and BZS, LOH for the STK11 and PTEN loci is an infrequent event in CC-related tumors. Linkage analysis excluded the PJS and CD/BZS loci on chromosomes 19 (19p13 and 19q13) and 10 (10q23) from harboring the gene defect(s) responsible for the phenotype in these 2 families.  相似文献   

19.
Loss of heterozygosity (LOH) is an important event in tumor formation. We have used polymorphic microsatellite repeat markers to identify and characterize LOH in spontaneous mutants of a human cell line, MR12-1, that is heterozygous for the adenine phosphoribosyltransferase gene (APRT+/-) located on chromosome 16q24.3. Initially, clones without extensive LOH (which are likely derived as a consequence of intragenic point mutations) and clones with multilocus LOH (which are likely due to major chromosome alterations) were identified. Clones with major regions of LOH were further characterized by assaying additional informative microsatellite markers. Analysis of 20 spontaneously-arising, independent APRT-/- clones from MR12-1 demonstrated that nine of the mutants retained both copies of APRT and 11 had undergone multilocus genetic alterations. The nature of LOH in four of the latter clones has been examined in detail by karyotype and fluorescence in situ hybridization analysis (Shao et al., 1996). These data demonstrate that LOH of chromosome 16 may be due to mitotic recombination, interstitial or partial deletion, or to more complex mechanisms. LOH in these clones may be a consequence of events similar to those observed in many tumors.  相似文献   

20.
Loss of heterozygosity (LOH) on chromosome 11 is frequently altered in various epithelial cancers. The present study was designed to investigate LOH on chromosome 11 in microdissected samples of normal prostatic epithelium and invasive carcinoma from the same patients. For this purpose, DNA was extracted from the microdissected normal and tumor cells of 38 prostate cancers, amplified by polymerase chain reaction PCR and analyzed for LOH on chromosome 11 using 9 different polymorphic DNA markers (D11S1307, D11S989, D11S1313, D11S898, D11S940, D11S1818, D11S924, D11S1336 and D11S912). LOH on chromosome 11 was identified in 30 of 38 cases (78%) with at least one marker. Four distinct regions of loss detected were: 1) at 11p15, at loci between D11S1307 and D11S989; 2) at 11p12, on locus D11S131 (11p12); 3) at 11q22, on loci D11S898, D11S940 and D11S1818; and 4) at 11q23-24, on loci between D11S1336 and D11S912. We found 25% of the tumors with LOH at 11p15; 39% had LOH at 11p12; 66% had LOH at 11q22; and 47% had LOH at 11q23-24. These deletions at 11p15, 11p12, 11q22 and 11q23-24 loci were not related to the stage or grade of the tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号