首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.  相似文献   

2.
Behavioral sensitization resulting from repeated, intermittent exposure to psychostimulants such as amphetamine (Amp) is hypothesized to model pathophysiology of psychotic disorders. The present study was designed to characterize the effects of a typical and an atypical antipsychotic drug, haloperidol and clozapine, respectively, on the induction of context-independent sensitization to Amp. Peripheral Amp treatment for five days (2 mg/kg/day, s.c.) produced an augmented stimulant response to an acute Amp challenge (2 mg/kg, s.c.) given seven days after the last pretreatment injection. Interestingly, preexposure to high doses of either clozapine (20 mg/kg) or haloperidol (0.5 mg/kg) alone also led to a sensitized behavioral response to an acute Amp challenge. The cross-sensitization between Amp and high doses of the haloperidol and clozapine may have occluded any blockade of Amp behavioral sensitization by the antipsychotics. Indeed, administration of a lower dose of clozapine (4 mg/kg) or haloperidol (0.1 mg/kg) with Amp during the preexposure phase clearly blocked the induction of behavioral sensitization. In addition to the behavioral sensitization, Amp-pretreated rats showed a reduction in the ability of the acute Amp challenge to induce c-fos mRNA in the medial prefrontal cortex and neurotensin/neuromedin N (NT/N) mRNA in the nucleus accumbens-shell. At doses that blocked the initiation of behavioral sensitization to Amp, clozapine fully and haloperidol partially restored the capacity of acute Amp to induce c-fos and NT/N gene expression. These data lend support to the psychostimulant-sensitization model of psychosis and a role of dopamine D2-like receptors in the phenomenon.  相似文献   

3.
We have investigated the feasibility of using gene therapy to attenuate the age-related decline in striatal dopamine D2 receptors (D2R) associated with reduced motor control. To this end, we have constructed an adenoviral vector containing the cDNA for the rat D2R. When injected into HeLa and HS24 cells in vitro, the vector induced an abundant message for D2R, as demonstrated by Northern analysis, and produced a membrane-bound protein capable of binding a D2R ligand, [3H]spiperone. When injected into rat striatum in vivo, the vector produced a marked increase in D2R near the site of injection, as evidenced by increased [3H]spiperone binding as well as by another more specific ligand, [125I]iodosulpride. The D2R produced in the striatum were functional, as evidenced by rotational behavior induced by a subcutaneous injection of the dopamine agonist, apomorphine. However, we did not observe any significant improvement in motor performance during preliminary experiments in which aged rats received bilateral striatal injections of the vector. In young rats, vector-induced expression of D2R in striatum was increased markedly three to five days after infection, but then declined to baseline levels by day 21. Loss of expression in aged rats proceeded at a somewhat lower rate. Because of the loss of expression and lack of significant performance enhancement in aged rats following vector injection into the striatum, we are now pursuing other strategies. These include functional assessment of the current vector in D2R null mutant mice as well as construction of new vectors that may yield more long-term expression.  相似文献   

4.
5.
Typical antipsychotic drugs, such as haloperidol and chlorpromazine, increase synthesis of the neuropeptide neurotensin (NT) in both the striatum and the nucleus accumbens, whereas atypical antipsychotic drugs, such as clozapine and olanzapine, do so only in the nucleus accumbens. By using in vivo microdialysis, we now report that acute administration of haloperidol, clozapine, or olanzapine failed to alter the release of NT in either the striatum or nucleus accumbens. In contrast, chronic administration of haloperidol for 21 days increased NT release in both the striatum and nucleus accumbens, whereas treatment for 21 days with the atypical antipsychotic drugs, clozapine or olanzapine, increased NT release selectively in the nucleus accumbens. These findings suggest that (i) increased NT mRNA expression and NT tissue concentrations are associated with increases in the extracellular fluid concentrations of the peptide and (ii) atypical antipsychotic drugs may exert their therapeutic effects and produce fewer side effects by virtue of their selectivity in limbic compared with striatal, target neurons.  相似文献   

6.
An in vitro receptor binding and in vivo microdialysis study was performed to further investigate the modulation of dopamine (DA) D2 receptors by neurotensin (NT) peptides. Saturation experiments with the D2 agonist [3H]NPA (N-propylnorapomorphine) showed that 10 nM of NT, 10 nM of neuromedin N (NN) and 1 nM of the C-terminal NT-(8-13) fragment significantly increased the KD values by 125%, 181%, and 194%, respectively without significantly affecting the Bmax value of the [3H]NPA binding sites in coronal sections of rat ventral forebrain mainly containing the nucleus accumbens (Acb) and the olfactory tubercle. In line with the previous findings that NT can increase GABA release in the Acb and that NT receptors are not found on DA terminals in this brain region, the present in vivo microdialysis study demonstrated that local perfusion of NT (1 nM) counteracted the D2 agonist pergolide (2 mu M) induced inhibition of GABA, but not of DA release in the rat Acb. This result indicates that NT counteracts the D2 agonist induced inhibition of GABA release in the rat Acb, via an antagonistic postsynaptic NT/D2 receptor interaction as also suggested by the inhibitory regulation of D2 receptor affinity in the Acb by the NT peptides demonstrated in the present receptor binding experiments. Thus, the neuroleptic and potential antipsychotic profile of the NT peptides may involve an antagonistic NT/D2 receptor regulation in the ventral striatum.  相似文献   

7.
Aged (20-22 months old) and young (3 months old) Sprague-Dawley rats were treated with GM1 ganglioside, 30 mg/kg i.p. for 30 days, and the content of nerve growth factor (NGF) and the high-affinity tyrosine receptor kinase (Trk) examined. NGF, estimated by a two-site enzyme immunoassay, was found moderately decreased in the frontal cortex and hippocampus, but not in the striatum of aged animals compared with young animals. The NGF decrease was accompanied by a reduction of NGF mRNA, evaluated by northern blot. Trk protein, determined by western blot with a pan-Trk antibody, was not altered in any region studied in the aged brain. GM1 treatment partially restored NGF and NGF mRNA in frontal cortex and hippocampus in the aged brain, but treatment had no effect on Trk protein. GM1 did not modify any of the parameters investigated in young animals.  相似文献   

8.
The present study was undertaken to examine the role of dopamine D2-receptors in the regulation of neurotensin release. Through a modification of the methods described by Maidment et al. (Neuroscience, 45 (1991) 81-93), we have developed a highly reproducible method of measuring changes in extracellular NT in the striatum and nucleus accumbens by in vivo microdialysis in awake animals. It was observed that calcium-dependent release of NT was evoked in both structures by infusing a high concentration of potassium. In addition, systemic administration of the D2 agonist quinpirole (5 mg/kg) induced a rapid increase of approximately 200% in extracellular NT levels in the lateral caudate and 30-40% in the nucleus accumbens. Conversely, treatment with the D2 antagonist eticlopride (0.5 mg/kg) reduced extracellular NT in the medial anterior caudate and nucleus accumbens 20-30%, but had no effect in the lateral anterior caudate. These data demonstrate for the first time that D2-receptors are important in the dopaminergic regulation of extrapyramidal and limbic NT release in conscious animals.  相似文献   

9.
The antipsychotic drug, haloperidol, elicits the expression of neurotensin and c-fos mRNA in the dorsal lateral region of the striatum and produces an acute cataleptic response in rodents that correlates with the motor side effects of haloperidol in humans. Mice harboring a targeted disruption of the RIIbeta subunit of protein kinase A have a profound deficit in cAMP-stimulated kinase activity in the striatum. When treated with haloperidol, RIIbeta mutant mice fail to induce either c-fos or neurotensin mRNA and the acute cataleptic response is blocked. However, both wild-type and mutant mice become cataleptic when neurotensin peptide is directly injected into the lateral ventricle, demonstrating that the kinase deficiency does not interfere with the action of neurotensin but rather its synthesis and release. These results establish a direct role for protein kinase A as a mediator of haloperidol induced gene induction and cataleptic behavior.  相似文献   

10.
Aging differentially affects receptor function. In the present electrophysiological study we compared neuronal responsiveness to locally applied dopamine D1 and D2 receptor agonist in the striatum of female Fischer 344 rats aged 3 and 26-27 months. In a subgroup of the old rats, the nigrostriatal dopamine bundle was destroyed unilaterally with 6-hydroxydopamine (6-OHDA) to assess receptor plasticity in response to denervation. Spontaneous firing rate of striatal neurons was higher in aged compared to young rats. Higher doses of the D1 agonist SKF 38393 or the D2 agonist quinpirole were required to elicit a 50% change in firing rate in aged compared to young rats. No difference with SKF 38393 or quinpirole was detected between 6-OHDA denervated and control (nonlesioned) striatum in aged rats. Supersensitivity to D2 agonists has been reported following 6-OHDA lesions in young rats. These observations suggest that D2 receptors in aged rat striatum might not be as plastic as in younger rats.  相似文献   

11.
The peptides neurotensin (NT) and neuromedin N exert effects on neurons by means of a high-affinity NT receptor (NTRH) belonging to the superfamily of G-protein-coupled receptors. In the present study, we used in situ hybridization histochemistry with sensitive riboprobe methodology to investigate the distribution of NTRH mRNA in the forebrain of adult rats. Labeled cells were abundant in the hypothalamus, epithalamus, ventral thalamus, septum, amygdala, and pallidum, including many regions where NTRH mRNA had not been detected previously. In the hypothalamus, novel sites of NTRH mRNA expression included the arcuate, periventricular, paraventricular, supraoptic, medial preoptic, anterior, ventromedial, and posterior nuclei, as well as the lateral hypothalamic area. In the thalamus, novel sites of expression included the anterodorsal nucleus, lateral habenula, and zona incerta, where labeling was much more extensive than previously reported. Novel telencephalic sites of expression included most bed nuclei of the stria terminalis, most divisions of the amygdala, the main olfactory bulb, the endopiriform nucleus, the claustrum, many parts of retrohippocampal allocortex, and limited parts of most isocortical areas. Novel sites of expression were also observed in the midbrain and pons. Taking into account expected differences in the subcellular locations of receptor mRNA and protein, the regional distribution of NTRH mRNA agrees well with that of NTRH determined previously. Our results identify many novel sites of NTRH mRNA expression in adult brain and provide a basis for investigating involvement of NT and related peptides in regulating the activity of these diverse cells, whose phenotypes remain largely undetermined.  相似文献   

12.
13.
The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.  相似文献   

14.
ALG-2 is a recently described pro-apoptosis gene that codes for a Ca2+-binding protein involved in T-cell receptor-, Fas- and glucocorticoid-induced cell death. We have used in situ hybridization histochemistry to examine the regional distribution of ALG-2 mRNA in the brain of 3- and 24-month old rats. There was widespread, predominantly neuronal distribution of ALG-2 mRNA throughout the brain. Areas expressing high levels included the granule and pyramidal cell layers of the hippocampus, choroid plexus, area postrema, and a number of hindbrain nuclei. ALG-2 mRNA levels in aged rats were not significantly different to young animals. The pattern of expression of ALG-2 mRNA in adult brain is similar to other apoptosis-related genes and suggests it may be involved in neuronal survival.  相似文献   

15.
D1- and D2-dopamine receptor-mediated regulation of immediate early gene levels in identified populations of neurons in the striatum was examined with quantitative in situ hybridization histochemical techniques. Levels of messenger RNA (mRNA) encoding the immediate early genes zif268 and c-fos were examined in two experiments in rats with unilateral lesions of the nigrostriatal dopamine pathway. In a dose-response study, animals were treated with doses of 0.5, 1.0, and 1.5 mg/kg of the D1 agonist SKF-38393 either alone or in combination with the D2 agonist quinpirole (1 mg/kg). Levels of immediate early gene mRNAs 60 min following drug treatments showed a dose-related increase to the D1 agonist alone and a potentiation to combined D1 and D2 against treatment. In a second experiment, in animals receiving 1 mg/kg SKF-38393 either alone or in combination with 1 mg/kg quinpirole, the level of zif268 mRNA was measured with a double-labeling method in striatal neurons containing enkephalin mRNA, a marker of D2-containing neurons, and in neurons not containing enkephalin, putative D1-containing neurons. In the dopamine-depleted striatum, D1 agonist treatment alone did not affect enkephalin-positive neurons but significantly elevated zif268 mRNA levels in nearly all enkephalin-negative neurons. Combined D1 and D2 agonist treatment further increased zif268 mRNA levels in this population of enkephalin-negative neurons and decreased zif-268 mRNA levels in enkephalin-positive neurons. These data indicate that the synergistic response to combined D1- and D2-receptor stimulation is mediated by interneuronal interactions involving the activation of D1 and D2 receptors on separate populations of striatal neurons.  相似文献   

16.
The regional difference in the expression of c-fos mRNA induced by typical and atypical antipsychotics was determined in prefrontal cortex, striatum, N. accumbens and lateral septum in rats by in situ hybridization. Two typical antipsychotics, haloperidol (2 mg/kg) and fluphenazine (2 mg/kg), and three atypical antipsychotics, (-)sulpiride (100 mg/kg), clozapine (20 mg/kg) and OPC-14597 (40 mg/kg), were used. Brains were fixed with 4% paraformaldehyde 45 min after drug administration (i.p.). Brain sections of 30 microns-thickness were made in a cryostat and hybridized with 35S-labelled for c-fos oligonucleotide probe. These sections were apposed to X-ray films and the autoradiograms were semi-quantitatively analysed by computer-assisted densitometry. All antipsychotics used increased c-fos mRNA expression in N. accumbens shell, a region of the forebrain associated with limbic systems. On the other hand, two typical antipsychotics (haloperidol and fluphenazine) that cause a high incidence of acute motor side effects increased the expression of c-fos mRNA in the dorsolateral striatum, an extrapyramidal region primarily involved in motor control. Only clozapine induced c-fos mRNA in the medial prefrontal cortex and lateral septum. These results strongly suggest that the shell region of N. accumbens may be a common site of therapeutic action of antipsychotics.  相似文献   

17.
The involvement of neurotensin (NT) within the nucleus accumbens core (NAC) in behavior has been sparsely investigated. Moreover, little is known of what role NT within the ventral striatum has on spatial learning. The present study investigated whether NT receptors in the NAC are implicated in learning of spatial information. Male Long-Evans rats were trained on a food search spatial learning task. Rats were microinfused with either NT antagonist SR 48692 (50 nM/0.5 =L) or saline in the NAC before each training session. Rats treated with SR 48692 made more reference and working memory errors during the acquisition of spatial learning than did rats infused with saline. These results suggest that NT receptors contribute to NAC-mediated spatial learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The present study describes the characterization of the binding properties and autoradiographic distribution of a new nonpeptide antagonist of neurotensin receptors, [3H]SR 142948A (2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methyl carbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]-amino]-ad amantane-2-carboxylic acid, hydrochloride), in the rat brain. The binding of [3H]SR 142948A in brain membrane homogenates was specific, time-dependent, reversible and saturable. [3H]SR 142948A bound to an apparently homogeneous population of sites, with a Kd of 3.5 nM and a Bmax value of 508 fmol/mg of protein, which was 80% higher than that observed in saturation experiments with [3H]neurotensin. [3H]SR 142948A binding was inhibited by SR 142948A, the related nonpeptide receptor antagonist, SR 48692 (2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole -3-carbonyl]amino]-adamantane-2-carboxylic acid) and neurotensin. Saturation and competition studies in the presence or absence of the histamine H1 receptor antagonist, levocabastine, revealed that [3H]SR 142948A bound with similar affinities to both the levocabastine-insensitive neurotensin NT1 receptors (20% of the total binding population) and the recently cloned levocabastine-sensitive neurotensin NT2 receptors (80% of the receptors) (Kd = 6.8 and 4.8 nM, respectively). The regional distribution of [3H]SR 142948A binding in the rat brain closely matched the distribution of [125I]neurotensin binding. In conclusion, these findings indicate that [3H]SR 142948A is a new potent antagonist radioligand which recognizes with high affinity both neurotensin NT1 and NT2 receptors and represents thus an excellent tool to study neurotensin receptors in the rat brain.  相似文献   

19.
The technique of intracranial microdialysis was used to investigate the effects of aging on the striatal dopaminergic system of the anesthetized Fischer 344 rat. Microdialysis probes were implanted into the striatum of young (2-8 months) and aged (24-28 months) urethane anesthetized rats. Striatal dialysate levels were analyzed for dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and serotonin (5-HT) by high performance liquid chromatography with electrochemical detection. As compared to the young animals, basal extracellular levels of DA and DOPAC were significantly decreased in two groups of aged animals. Stimulation with excess potassium added through the microdialysis probe produced a robust overflow of DA in the young and aged rat striatum, but the evoked overflow of DA was not diminished in the aged rat striatum as compared to young animals. In contrast, d-amphetamine-evoked overflow of DA was again robust in young and aged animals, but was greatly decreased in the aged rat striatum as compared to the signals recorded in the young rats. Taken together with previous reports, these data support the hypothesis that a major change in the regulation of DA release that occurs in aging involves changes in the function of the neuronal uptake of DA, which may be a compensatory property of DA neurons in senescence.  相似文献   

20.
In 3- and 18-month-old male Wistar rats, levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA), dehydroascorbic acid (DHAA), noradrenaline (NA), uric acid, glutathione (GSH) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined by HPLC in the striatum and/or in the brainstem 24 h after single injections of MPTP (12-35 mg/kg i.p.). Aged rats had lower baseline levels of AA and GSH, compared to young rats. In aged rats, MPTP 35 mg/kg induced a 70% death rate and a decrease in striatal DOPAC/DA ratio which was significantly correlated to MPP+ concentrations (r = -0.840, P < 0.005); in addition, MPTP did not increase AA oxidation. In the brainstem, the MPTP-induced decrease in NA levels and increase in uric acid levels were significantly correlated to the MPP+ concentrations (r = -0.709, P < 0.05, and r = +0.888, P < 0.001, respectively). In conclusion, evidence is given of a mechanism of toxicity of MPTP involving oxidative stress produced by xanthine oxidase; in addition, in aged rats the neuronal antioxidant system (levels of AA and GSH) is considerably lower than in young rats and may play an enabling role in the MPTP age-related neurotoxic effects on striatum and brainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号