首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Clinical Proteomics has traveled a long way pinpointing potential biomarkers for a variety of diseases. However, the absence of clinical implementation of proteomics findings has led to a frank evaluation and reconsideration of applied practices in biomarker discovery, recruitment of technological tools for biomarker verification and generation of new guidelines for data reporting. Nevertheless, considering the need for vast clinical resources for biomarker validation, the frequent lack of clear definitions of contexts of use, in combination to the biomarker “high offer,” progress toward biomarker implementation will even more require the adoption of an extensive open-minded approach: disease-focused networks are needed to ensure rapid exchange of information, initiation of appropriate studies, parallel validation of multiple biomarkers and sharing of valuable clinical resources. This viewpoint article targets to reflect on these issues and advocates the added value of multidisciplinary networks in biomarker development using bladder cancer as a paradigm.  相似文献   

2.
    
Urinary bladder cancer is the fifth most common cancer in the United States. The National Cancer Institute estimates that the incidence rates will be 68 810 and the mortality rate will be 14 100 in the year 2008. Although the gold standards cytology and cystoscopy are specific for diagnosing bladder cancer, the former lacks the sensitivity to detect low‐grade tumors and the latter is very invasive and expensive. Therefore, scientists are interested in identifying reliable non‐invasive biomarkers that could be utilized in screening, leading to early detection and/or in predicting the progression of superficial tumors to invasive higher‐stage lesions with high specificity and sensitivity. Several biomarkers that indicate changes in the expression of proteins associated with increased risk have been identified. The purpose of this analysis is to provide an overview of the studies that have been conducted during the last decade that identify diagnostic and prognostic biomarkers via proteomic and genomic advancements.  相似文献   

3.
    
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5‐year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large‐scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.  相似文献   

4.
    
Biomarkers for various diseases have been extensively searched for the past 5 years. Nevertheless, most efforts were focused on the search for protein biomarkers from serum samples. In this work, we tried to look for peptide biomarkers from gastric juice samples with MALDI‐TOF‐MS. More than 200 gastric juice samples from healthy people, gastric ulcer patients, duodenal ulcer patients, and cancer patients were examined. There were clear pattern differences of mass spectra among samples from healthy people and patients with different gastric diseases. We found five peptides for gastric cancer diagnosis with high sensitivity and specificity. Sequences of these five peptides, including two pepsinogen fragments, leucine zipper protein fragment, albumin fragment, and α‐1‐antitrypsin fragment, have been identified by mass spectrometric analysis and immuno‐deplete assay with antibodies.  相似文献   

5.
6.
7.
    
Cervical cancer screening is ideally suited for the development of biomarkers due to the ease of tissue acquisition and the well-established histological transitions. Furthermore, cell and biologic fluid obtained from cervix samples undergo specific molecular changes that can be profiled. However, the ideal manner and techniques for preparing cervical samples remains to be determined. To address this critical issue a patient screening protein and nucleic acid collection protocol was established. RNAlater was used to collect the samples followed by proteomic methods to identify proteins that were differentially expressed in normal cervical epithelial versus cervical cancer cells. Three hundred ninety spots were identified via 2-D DIGE that were expressed at either higher or lower levels (>three-fold) in cervical cancer samples. These proteomic results were compared to genes in a cDNA microarray analysis of microdissected neoplastic cervical specimens to identify overlapping patterns of expression. The most frequent pathways represented by the combined dataset were: cell cycle: G2/M DNA damage checkpoint regulation; aryl hydrocarbon receptor signaling; p53 signaling; cell cycle: G1/S checkpoint regulation; and the ER stress pathway. HNRPA2B1 was identified as a biomarker candidate with increased expression in cancer compared to normal cervix and validated by Western blot.  相似文献   

8.
In this paper we investigate applying SOM (Self-Organizing Maps) for classification and rule extraction in data sets with missing values, in particular from real clinical data of bladder cancer patients. For this experiment, we used real data of bladder cancer patients provided by Kitasato University Hospital. When using input data with missing values for SOM, the missing value is either interpolated in the preprocessing stage, or the missing value is replaced with a specific value or property that marks it as a missing value. In either case, there is a possibility some rules can be extracted from data with missing values. On the other hand, these data can have a negative influence for the classification for data sets for which missing values should be neglected. In this research we propose a method where SOM is trained using an input vector in which the properties for the missing values are excluded. The influence of information on the missing values can be reduced by using the proposed method. Through computer simulation, we showed that the proposed method gave good results in classification and rule extraction from clinical data of bladder cancer patients. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

9.
    
Biomarkers are greatly needed in the fields of neurology and psychiatry, to provide objective and earlier diagnoses of CNS conditions. Proteomics and other omics MS-based technologies are tools currently being utilized in much recent CNS research. Saliva is an interesting alternative biomaterial for the proteomic study of CNS disorders, with several advantages. Collection is noninvasive and saliva has many proteins. It is easier to collect than blood and can be collected by professionals without formal medical training. For psychiatric and neurological patients, supplying a saliva sample is less anxiety-provoking than providing a blood sample, and is less embarrassing than producing a urine specimen. The use of saliva as a biomaterial has been researched for the diagnosis of and greater understanding of several CNS conditions, including neurodegenerative diseases, autism, and depression. Salivary biomarkers could be used to rule out nonpsychiatric conditions that are often mistaken for psychiatric/neurological conditions, such as fibromyalgia, and potentially to assess cognitive ability in individuals with compromised brain function. As MS and omics technology advances, the sensitivity and utility of assessing CNS conditions using distal human biomaterials such as saliva is becoming increasingly possible.  相似文献   

10.
11.
The application of proteomics in drug development could be a major source of novel biomarkers to improve the efficacy and safety of new drugs. Training of US Food and Drug Administration (FDA) reviewers on current applications of proteomics is important for the future review of proteomic data. A Grand Rounds in Proteomics was held on April 3, 2007 at the FDA in White Oak, Silver Spring, MD, USA. The goal of this activity was to contribute to reviewer training as well as to generate discussions regarding the readiness of proteomic platforms in drug development, similar in scope to applications in genomics and metabolomics. Several speakers from industry and academia presented data on proteomic applications in drug development (meeting agenda available in the Supporting Information). An additional goal of this meeting was to encourage proteomic data submissions within the Voluntary eXploratory Data Submissions (VXDS) at the FDA. VXDS meetings represent key venues for exchange between the FDA and sponsors of scientific and clinical data on exploratory biomarkers. The FDA has received a limited number of VXDS submissions containing proteomic data. This meeting was an opportunity to identify possible areas in proteomics where future VXDS submissions may be received. Voluntary submissions have been transformed into regulatory submissions in genomics, and a similar path may also be followed by proteomic data in the future. Proteomic biomarkers may also be suitable for submission to the Pilot Process for Biomarker Qualification at the FDA.  相似文献   

12.
Development of reliable medical decision support systems has been the subject of many studies among which Artificial Neural Networks (ANNs) gained increasing popularity and gave promising results. However, wider application of ANNs in clinical practice remains limited due to the lack of a standard and intuitive procedure for their configuration and evaluation which is traditionally a slow process depending on human experts. The principal contribution of this study is a novel procedure for obtaining ANN predictive models with high performances. In order to reach those considerations with minimal user effort, optimal configuration of ANN was performed automatically by Genetic Algorithms (GA). The only two user dependent tasks were selecting data (input and output variables) and evaluation of ANN threshold probability with respect to the Regret Theory (RT). The goal of the GA optimization was reaching the best prognostic performances relevant for clinicians: correctness, discrimination and calibration. After optimally configuring ANNs with respect to these criteria, the clinical usefulness was evaluated by the RT Decision Curve Analysis. The method is initially proposed for the prediction of advanced bladder cancer (BC) in patients undergoing radical cystectomy, due to the fact that it is clinically relevant problem with profound influence on health care. Testing on the data of the ten years cohort study, which included 183 evaluable patients, showed that soft max activation functions and good calibration were the most important for obtaining reliable BC predictive models for the given dataset. Extensive analysis and comparison with the solutions commonly used in literature showed that better prognostic performances were achieved while user-dependency was significantly reduced. It is concluded that presented procedure represents a suitable, robust and user-friendly framework with potential to have wide applications and influence in further development of health care decision support systems.  相似文献   

13.
    
Serum and plasma from which serum is derived represent a substantial challenge for proteomics due to their complexity. A landmark plasma proteome study was initiated a decade ago by the Human Proteome Organization (HUPO) that had as an objective to examine the capabilities of existing technologies. Given the advances in proteomics and the continued interest in the plasma proteome, it would timely reassess the depth and breadth of analysis of plasma that can be achieved with current methodology and instrumentation. A collaborative project to define the plasma proteome and its variation, with a plan to build a plasma proteome database would be timely.  相似文献   

14.
    
Preeclampsia (PE) is a multisystem disorder of pregnancy that develops after 20 wk of gestation in previously normotensive women and complicates 5–8% of pregnancies. This rapidly progressive syndrome is usually diagnosed when the mother develops hypertension and proteinuria. The only effective treatment is delivery of the baby although early low-dose aspirin has been shown to significantly reduce the risk for PE. Recent advances in proteomic methods of protein separation, identification, and quantitation may allow for the identification of proteins and peptides that could facilitate early detection of disease, improve assessment of prognosis, and allow closer monitoring of women at risk for PE. This review summarizes all currently available markers for prediction and diagnosis of PE and presents urine proteomic studies performed for the identification of novel biomarkers.  相似文献   

15.
    
Acute graft-versus-host disease (aGVHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HCT), resulting in considerable morbidity and mortality. Currently, the diagnosis of aGVHD is largely made based on clinical parameters and invasive biopsies. For the past 20 years, researchers have been trying to find reliable biomarkers to enable early and accurate diagnosis of aGVHD. Although a number of potential aGVHD biomarkers have been published, as yet, no validated diagnostic test is available. Proteomics encompasses a broad range of rapidly developing technologies, which have shown tremendous promise for early detection of aGVHD. In this article, we review the current state of aGVHD biomarker discovery, provide a summary of the key proteins of interest and the most common analytical procedures for the clinic, as well as outlining the significant challenges faced in their use.  相似文献   

16.
    
We describe the application of proteomic techniques for protein profiling and biomarker discovery in malignant lymphoma. Hematologic malignancies are primarily characterized by their clinical, morphological, immunophenotypical, and molecular-genetic features. However, when based on these parameters, apparently identical lymphomas may show distinct clinical courses, suggesting underlying biological heterogeneity. Recent proteomic analyses have identified differences in protein expression both with regard to subclassification of the malignant lymphoma entities, as well as in correlation with clinical outcome. In this review, studies on quantification of differential protein expression in and between malignant lymphoma entities are included. Studies are included that are based on patient samples, that is, serum/plasma or cytological specimens, as well as intact tumor tissues, together with studies that focus on tumor cells alone, or in conjunction with the tumor microenvironment. For biomarker discovery in malignant lymphoma, these approaches are used to uncover the underlying biological mechanisms and identify proteins with potential diagnostic and prognostic utility, either as predictive biomarkers or as novel future treatment targets.  相似文献   

17.
Tissue is the most relevant biological material to gather insight in disease mechanisms by means of omics technologies. However, fresh frozen tissue, which is generally regarded as the best imaginable source for such studies, is often not available. In case it is available, the different ways of storage (e.g. −20°C, −80°C, liquid nitrogen, etc.) hamper the conduction of reproducible multicenter studies because of different protein degradation rates. Formalin-fixed paraffin-embedded (FFPE) tissue on the contrary is considered as a valuable alternative for fresh frozen tissue, because only a few standard operation procedures are applied worldwide for the preparation of these tissues and because they are all stored in the same way. However, a study on the impact of the different preparation protocols for FFPE tissue was still lacking. Therefore, Bronsert et al. in this issue [Bronsert, P., Weißer, J., Biniossek, M. L., Kuehs, M. et al., Proteomics Clin. Appl. 2014, 8 786–804] conducted such a study that provides proof that there is no significant effect between these sample preparations procedures, and thereby they further open the gate for FFPE tissues to enter the field of clinical proteomics.  相似文献   

18.
Aortic aneurysm is a deceptively indolent disease that can cause severe complications such as aortic rupture and dissection. In the normal aorta, vascular smooth muscle cells within the medial layer produce and sustain the extracellular matrix (ECM) that provides structural support but also retains soluble growth factors and regulates their distribution. Although the ECM is an obvious target to identify molecular processes leading to structural failure within the vessel wall, an in-depth proteomics analysis of this important sub-proteome has not been performed. Most proteomics analyses of the vasculature to date used homogenized tissue devoid of spatial information. In such homogenates, quantitative proteomics comparisons are hampered by the heterogeneity of clinical samples (i.e. cellular composition) and the dynamic range limitations stemming from highly abundant cellular proteins. An unbiased proteomics discovery approach targeting the ECM instead of the cellular proteome may decipher the complex, multivalent signals that are presented to cells during aortic remodelling. A better understanding of the ECM in healthy and diseased vessels will provide important pathogenic insights and has potential to reveal novel biomarkers.  相似文献   

19.
20.
    
The low molecular weight (LMW) region of the circulatory proteome, thought to contain a rich source of biomarkers, resides in vivo, in a complexed state with larger, highly abundant resident proteins. Consequently, serum fractionation approaches that deplete the high-abundance proteins under native conditions will remove much of the LMW proteome. We describe a new strategy to systematically collect, isolate and enrich the LMW molecules that would be otherwise eliminated during the depletion of high-abundance circulatory proteins based on continuous elution electrophoresis. We employ strong denaturing conditions to disrupt association with the high-abundance carrier proteins followed by fractionation and removal of SDS. Under denaturation, the LMW molecules were effectively stripped from the highly abundant carrier proteins. We then removed the SDS by ion exchange matrix sequestration and concentrated the fractions. The outcome is a series of SDS-free fractions of LMW molecules. The isolated fractions were then analyzed by enzymatic digestion followed by LC-MS/MS analysis. The yield of multiple peptide hits as well as the total number of identifications significantly increased (50%) compared to unfractionated serum. The method yielded a 30% higher number of low-abundance serum proteins compared to direct sequencing of unfractionated serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号