首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to incorporate the thermoelastic effects of fiber coatings into models of fiber/matrix composites was deter-mined. The coated fiber was replaced by an "effective" transversely isotropic fiber so that the properties of this effective fiber could be used in composite models. This ap-proach was used to determine the magnitude of errors re-sulting from neglect of the coatings in modeling fiber/matrix debonding and sliding and in reduction of data from real composites. The effects of carbon and BN coatings in the Nicalon/SiC system were found to be significant. It was found that significant errors could be expected from fitting models to experimental data if the compliance and coeffi-cient of thermal expansion of the coatings were ignored, even when the coatings were thin. Wide use of the approach required revision of composite models to allow inclusion of a transversely isotropic fiber. Such a revision was de-rived for a popular model of matrix cracking stress, and significant effects again were found to result from neglect of coatings.  相似文献   

2.
The article presents the results of experimental investigation on mechanical and dry sliding wear behavior of unsaturated polyester resin (USP), reinforced with naturally woven coconut sheath and glass fibers. The mechanical properties of coconut sheath (N) and glass fiber (G) reinforced polyester composites were studied, and the tribological behaviors were tested on pin‐on‐disc sliding wear tester. Mass loss was determined as a function of sliding distance for a sliding velocity of 3.5 m/s and an applied normal load of 40 N. The experimental result revealed that the mechanical properties and wear resistance of the composites depend on the wt% reinforcement of coconut sheath/glass fiber and sliding distance. The hybrid reinforcement (GGN) greatly increased the mechanical properties of USP. At lower sliding distance, the N‐reinforced USP had lower wear loss, whereas at higher sliding distance, the hybrid fiber‐reinforced (GGN) USP composite had lower wear loss. Furthermore, the work showed that the higher sliding distance bring about changes in the worn surface features such as interface separation, inclined fracture of fibers, loss of matrix, and the appearance of debris with the two different fibers. The worn surfaces were also examined by scanning electron microscopy. The study showed differing trends with load for the two types of reinforcements. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Toughening of MoSi2 for high-temperature applications can be achieved by incorporating ductile refractory-metal reinforcements, provided that a coating is applied to prevent interdiffusion and reaction between the matrix and the reinforcements. In the present study, three different coating techniques for applying a thin Al2O3 film on Nb reinforcements as a diffusion barrier have been studied. The techniques consisted of (i) sol-gel coating; (ii) physical vapor deposition (PVD); (iii) hot dipping in molten Al, followed by anodizing Al to form Al2O3. The processing parameters for the techniques were evaluated and the effectiveness of each coating as a diffusion barrier was assessed. For the present MoSi2 matrix which contains SiO2, PVD coatings provided the most effective diffusion barrier for processing MoSi2/Nb composites.  相似文献   

4.
Unlike fibers, planar reinforcements, such as flakes and ribbons, provide reinforcement in two directions. If such reinforcements are arranged parallel to their principal plane in a composite material, they thus provide a distinctly higher performance than fiber reinforcements for two-dimensional loading conditions. This higher performance amounts to about a factor three for the Young's modulus and a factor two for the tensile strength. However, in spite of this obvious advantage, composites with planar reinforcements are as yet relatively unknown. This is mainly due to the fact that planar reinforcements are not as readily available as fiber reinforcements and therefore not much work has been done on them. The present article gives first a short outline of the theory of the elastic and tensile properties of composites with planar reinforcements. Then, a non-exhaustive review is presented of the work on composites with planar reinforcements, with particular attention given to recent developments. A final aim of this article is that by showing the merits of planar reinforcements as compared to presently existing fiber reinforcements, it may contribute to their use in the design of composite structures.  相似文献   

5.
In this study, friction and wear of polyimides reinforced by carbon, glass, aramid, and nano‐alumina fibers were studied and comparatively evaluated against Si3N4 on a ball‐on‐disk test rig under dry rotating and reciprocating sliding, and coefficient of friction and wear rate were considered as responses. The worn surfaces of the composites were examined by scanning electron microscopy to reveal wear mechanisms of the materials' damage. Wear mechanisms are found to be dependent on the test conditions and mechanical properties of the composites itself. It was proven that different reinforcements had different effects on the friction and wear behavior of the polyimide composites to a great extent. The testing condition also had an important role on the tribological properties of the same materials. The best performance was shown by glass fiber‐reinforced polyimide composites owing to their excellent strength and hardness which can share the applied load on the sliding surface. POLYM. COMPOS., 37:2541–2548, 2016. © 2015 Society of Plastics Engineers  相似文献   

6.
Silicate matrix composites are potential candidates for high-temperature applications. In the present investigation, the effect of metallic (Cu) and non-metallic (SiC particulates, platelets, short fibres and whiskers) additions on the rheological behaviour of borosilicate matrix composites has been evaluated. The hot-pressed composites were tested both in compression and tension in the temperature range of 625–725°C. SiC reinforced composites tested in compression exhibited varying degree of strengthening and strain rate sensitivity depending on the volume fraction and morphology of reinforcements. The degree of strengthening and strain rate sensitivity depends on the volume fraction and morphology of reinforcements. Strengthening effect increased with the volume fraction and aspect ratio of reinforcements. The flow behaviour of composites changed from Newtonian to non-Newtonian with strain rate sensitivity index value changing from unity to 0.48. A similar trend was seen in the rate sensitivity of copper composites. However, copper additions decreased the strength of the composites at lower temperatures because of the softer copper phase. Pre-oxidation of copper particles had certain strengthening effect on the composite. The apparent viscosity of SiC reinforced composites increased with volume fraction and aspect ratio of reinforcements. However, in particulate composites, the viscosity found to increase with particle size. The mechanical/hydrodynamic interactions among the particulates appeared to be responsible for such a behaviour. With increasing strain rate, the viscosity decreased progressively confirming the shear thinning of the composites. The tensile ductility of the composites with 40 vol% reinforcements was evaluated at 700°C. While 400% elongation was observed in SiC particulate, platelet and copper composites, in short fibre/whisker composites, the tensile elongation values were only 150%. Further, the elongation of SiC platelet and copper composites improved by decreasing temperature and volume fraction of reinforcements, and also elongation values >500% were recorded. The tensile ductility of borosilicate composites was limited by onset and growth of cavities nucleated at the reinforcement/matrix interfaces.  相似文献   

7.
Interfacial mechanical properties of both Nicalon SiC/aluminum borate and Nicalon SiC/aluminum phosphate with various fiber coatings and heat treatments were evaluated using a commercially-available indenter to induce fiber sliding during load cycling experiments. Varying degrees of sliding due to different coating materials were found. The interfacial characteristics including the shear, the residual axial fiber, and debond stresses were estimated by matching the experimental stress-displacement curves with curves predicted from an existing model. The elastic modulus and hardness of the interphase/interface in ceramic matrix composites were also evaluated. These results provided important insights into the ultimate mechanical performance of fiber-reinforced ceramic-matrix composites.  相似文献   

8.
Room-temperature debonding and sliding of fibers coated with La-monazite is assessed using a composite with a polycrystalline alumina matrix and fibers of several different single crystal (mullite and sapphire) and directionally solidified eutectic (Al2O3/Y3Al5O12 and Al2O3/Y-ZrO2) compositions. These fibers provide a range of residual stresses and interfacial roughnesses. Sliding occurred over a debond crack at the fiber-coating interface when the sliding displacement and surface roughness were relatively small. At large sliding displacements with relatively rough interfaces, the monazite coatings were deformed extensively by fracture, dislocations, and occasional twinning, whereas the fibers were undamaged. Dense, fine-grained areas (10 nm grain size) resembling recrystallized microstructures were also observed in the most heavily deformed regions of the coatings. Frictional heating during sliding is assessed. Potential mechanisms for forming such microstructures at low temperature are discussed, and a parallel is drawn with the known resistance of monazite to radiation damage. The ability of La-monazite to undergo both debonding and plastic deformation relatively easily at low temperatures may enable its use as a composite interface.  相似文献   

9.
Interfacial mechanical properties of both Nicalon SiC/aluminum borate and Nicalon SiC/aluminum phosphate with various fiber coatings and heat treatments were evaluated using a commercially-available indenter to induce fiber sliding during load cycling experiments. Varying degrees of sliding due to different coating materials were found. The interfacial characteristics including the shear, the residual axial fiber, and debond stresses were estimated by matching the experimental stress-displacement curves with curves predicted from an existing model. The elastic modulus and hardness of the interphase/interface in ceramic matrix composites were also evaluated. These results provided important insights into the ultimate mechanical performance of fiber-reinforced ceramic-matrix composites.  相似文献   

10.
分析了当今下游复合材料工业的发展对玻纤增强基材发展的需要。重点介绍了风电叶片用玻纤纱、技术织物、复合织物、预浸渍制品、预成型增强体等各类玻纤增强基材以及增强热塑性塑料用的短切纤维、混合纱、LFT、GMT、GMT-D、LFT—D、增强热塑性片材等各类玻纤增强基材。并为玻纤增强基材如何促进这两类复合材料产品的发展提出建议。  相似文献   

11.
《Ceramics International》2020,46(12):20345-20356
The effects of the size and morphology of the reinforcement particles on hardness and tribological behaviors of the AZ31 Mg alloy matrix composites were studied. Different ceramic compounds, including boron carbide (B4C), tungsten carbide (WC), and Zirconia (ZrO2) were selected as the reinforcement materials for developing mono composites. The average sizes of the B4C, WC, and ZrO2 particles were about 150 μm, 5 μm, and 35 nm, respectively. Besides, hybrid reinforcements composed of the B4C + ZrO2 and WC + ZrO2 powders were employed to develop hybrid composites. All the composite were fabricated using the friction stir processing (FSP) technique. Investigating the microstructure of the composites by secondary electron microscopy (SEM) analysis showed a homogenous distribution of the reinforcement particles in the AZ31 Mg alloy matrix. Microhardness measurements revealed that the hardness of AZ31/ZrO2 nanocomposite is about 120% higher than that of AZ31 base metal. According to the results of the dry sliding wear tests, the AZ31/B4C and AZ31/ZrO2 composites had a maximum wear resistance and a minimum friction coefficient average, respectively. Combining the B4C and WC reinforcements with the ZrO2 nanoparticles caused an improvement in wear resistance and friction performances of the hybrid composites. SEM observations of the worn surfaces and debris resulted from wearing of the samples after 500 m sliding distance under the normal load of 10 N, revealed that the severe and mild abrasive mechanisms are dominant.  相似文献   

12.
The high-temperature flow behavior of different borosilicate composites was investigated in compression and tension. The flow behavior of composites changed from Newtonian to non-Newtonian as the volume fraction and aspect ratio of reinforcements increased. Generally, platelet/particulate composites exhibited higher tensile elongations compared with short fiber/whisker composites. The tensile ductility increased with decreased volume fraction of reinforcements and temperature. Cavitation in these samples varied across the length, and maximum cavitation occurred near the fracture zone.  相似文献   

13.
航天飞行器热防护系统技术综述   总被引:2,自引:0,他引:2  
综述表明,C/C和C/SiC复合材料是宇宙输送系统飞行器前端部位热防护系统的最佳材料选择,多层抗氧化涂层、超高温陶瓷(UHTC)涂层、UHTC基体改性是提高其高温长期使用的有效途径。指出多层UHTC涂层、纳米级UHTC颗粒、火花等离子浇结(SPS)及碳气凝胶填充碳泡沫新型热防护结构等在高温热防护材料方面已显现出实际应用方向。  相似文献   

14.
Carbon fiber-reinforced ceramicizable phenolic resin matrix composites have been widely used in the field of thermal protection materials. In this paper, the ZrO2f-coated Cf (ZrO2f/Cf) hybrid fibrous reinforcements were designed to improve oxidation resistance of carbon fiber and ceramicizable composites reinforced by ZrO2f/Cf hybrid fibrous reinforcements were prepared to investigated oxidation resistance and mechanical properties of the composites at high temperature. The results show that ZrO2f/Cf hybrid fibrous reinforcements have good thermal stability and high oxidation resistance, and its ceramicizable composites have good bending strength at high temperature. Weight loss rate of the composites is only 21 %, and bending strength can be as high as 39 MPa when ablation time was 12 min at 1400 °C.  相似文献   

15.
玻璃纤维作为增强基材,是当今纤维增强塑料(FRP)的主导材料。FRP制品有很强的结构性,材料性质和结构与制品工艺有十分密切的关系。介绍了颇具发展潜力的5种玻纤增强基材即玻纤薄毡、增强热塑性塑料用玻纤、玻纤经编织物、玻纤预浸渍产品和玻纤预成型体的发展概况,意在和玻纤复材制品行业交流,促进上下产业链的共同发展。  相似文献   

16.
Blends of maleated polypropylene (MAPP) with high contents of waste rubber powder, namely ground tire rubber and waste ethylene propylene diene monomer (EPDM) powder, were used as impact modifiers for polypropylene (PP) based composites with different reinforcements (hemp, talc, and milled glass fiber). Adding reinforcements led to increase in modulus (tensile, flexural, and torsion moduli) of PP, while its impact strength decreased noticeably. Impact modification of PP‐based composites was successfully performed via inclusion of MAPP/waste rubber compounds, especially compounds containing waste EPDM powder. Inclusion of such impact modifiers increased impact strength of composites over 80%. The effects of impact modification were more significant for hemp‐ and glass‐filled composites compared to composites containing talc. However, slight decrease in tensile, flexural, and torsion moduli (up to 30%) of the composites was also observed after inclusion of impact modifiers. POLYM. COMPOS., 35:2280–2289, 2014. © 2014 Society of Plastics Engineers  相似文献   

17.
ABSTRACT

In this work, characterization of polymer matrix composites was carried out. Thermoplastic polymers were used as a matrix. Nondestructive Young’s modulus values were compared with the destructive values. Differences between the destructive and nondestructive values are less than 10%. Reinforcements increased Young’s modulus. The principal strain values of the glass fiber-reinforced polymethylmethacrylate (PMMA) composites were higher than that of graphite-reinforced PMMA composites. Radiography and tomography methods were used for the characterization. Specimens consisted of homogeneously distributed reinforcements. Imaging behavior was appropriate. There are no cracks or pores according to radiography. Specimens consisted of homogeneously distributed reinforcements.  相似文献   

18.
The dependence of toughening mechanisms on reinforcement orientation and the toughening effect governed by multiple toughening mechanisms were characterized for ceramic-matrix composites (CMCs) with discontinuous elongated reinforcements. Two kinds of Si3N4-based composites, with directionally oriented and randomly oriented SiC whiskers, respectively, were tested by the three-point bending of chevron-notched bars. Based on microscopic observations and micromechanical analyses, three mechanisms were confirmed to dominate the crack-bridging behavior: (1) bridging and breaking of long reinforcements, (2) frictional pullout and breaking of short reinforcements, and (3) local matrix spalling. Both the occurrence of the multiple mechanisms and their toughening effects were proved dependent on the reinforcement orientation. The combined effect of the multiple mechanisms correlated with random orientation thus was characterized by a statistical approach to solve for the crack-bridging stress function. The theoretical model was in good agreement with the experimental results.  相似文献   

19.
Bamboo strips [10 cm × 1.5 cm × (1?1.5) mm] were treated with caustic solutions for 1 h at different concentrations e.g., 0, 10, 15, 20, and 25%. Bamboo strips reinforced polyester resin composites were fabricated by hand‐lay‐up technique using both alkali‐treated and untreated bamboo strips, using a room temperature curing system for the polyester resin. This study aims at the evaluation of the influence of caustic concentration on the mechanical properties of bamboo strips reinforced polyester resin composites at a constant 50% loading of reinforcement. Maximum improvement in property was achieved possibly with 20% of caustic treated strip reinforcements. Beyond 20%, there was degradation in all the strength properties because of failure in mechanical properties of the reinforcements itself. The effect of fiber loading variation upon mechanical properties was also studied. It was observed that superior mechanical properties were obtained with 60% filler loading. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A procedure for the formation of A12O3 coatings as diffusion barriers between ductile reinforcements (e.g., Nb and Ta) and intermetallic matrices (e.g., MoSi2 and NiAl) is described. The coating technique involved sol-gel processing of alumina -forming sols with the addition of submicrometer-sized A12O3 particles. Cracking in the coatings, a typical shortcoming of alumina sol-gel coating, was overcome by the addition of the fine particles into the sols. The surface charge of the A12O3 particles was adjusted to be the same as the AIO(OH) colloids in the sols and electrophoresis was used to codeposit A12O3 and AIO(OH) onto the surfaces of the reinforcements. The alumina gel derived from the sols acted as binder for the alumina particles, while the particles reduced the shrinkage of the sol-gel coatings and promoted the formation of dense coatings. The thickness of the coatings could be easily controlled without cracking and the effectiveness of the coatings as diffusion barriers was improved substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号