首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The binary Si–Zn and Mn–Si systems have been critically evaluated based upon available phase equilibrium and thermodynamic data, and optimized model parameters have been obtained giving the Gibbs energies of all phases as functions of temperature and composition. The liquid solution has been modeled with the Modified Quasichemical Model (MQM) to account for the short-range-ordering. The results have been combined with those of our previous optimizations of the Mg–Si, Mg–Zn and Mg–Mn systems to predict the phase diagrams of the Mg–Si–Zn and Mg–Mn–Si systems. The predictions have been compared with available data.  相似文献   

3.
The composition-dependent interdiffusivities in the fcc Co–Ni–Ta alloys at 1373 K and 1473 K were deduced by using our newly developed numerical inverse scheme that combines two-dimensional (2D) simulations with diffusion triple experiments. This approach largely reduced the experimental efforts by analyzing only one single-phase diffusion triple at each temperature yet covering a much wider composition range than diffusion couples. The reliability of the high-throughput results was firstly verified by reproducing the experimental 2D composition profiles in each triple. In order to further validate the deduced interdiffusivities, several traditional one-dimensional (1D) diffusion couples were also devised, and the widely recognized Sauer-Freise method and Whittle-Green method were then employed to calculate the interdiffusivities for the binaries and at the intersection points within the ternary composition range, respectively. The interdiffusivities extracted from the inverse scheme agree well with those from the traditional approaches, which strongly proves the applicability of the present new scheme. Besides, the constructed main interdiffusivity planes at 1373 K and 1473 K provide an overview of the diffusion behavior in the fcc Co–Ni–Ta system and promote further kinetic studies.  相似文献   

4.
In this paper, we have studied the effect of controlled parameters on the anomalous behavior and property of the codeposited nickel-cobalt (Ni–Co) films in the complex sulfamate-chloride bath. The variation of current densities and temperature resulted in different Co atomic percentage (Co at%) of the deposited films as well as the morphology and microhardness. Co at% in Ni–Co films gradually decreased with increasing current density and temperatures with variation from approximately 25 to 15%. The Co participation could also inhibit grain growth of the deposited films. The Ni–Co film codeposited at lower current density or temperature would have the higher hard Co content and smaller grain which results in the higher microharness and smooth morphology.  相似文献   

5.
A thermodynamic database has been produced for the Al–Co–Ni–Y quaternary system, with an emphasis on the Al-rich region of the Al–Ni–Y ternary system. The database was created using the CALPHAD method, combining existing binary systems with relevant experimental and first-principles information for selected Al–Ni–Y and Co-containing compounds. The thermodynamic database was used to produce equilibrium and non-equilibrium Scheil simulations to determine the phases present in Al–Co–Ni–Y alloys. The values for the Scheil simulation show good agreement, when compared with experimentally determined phase fractions of intermetallic particles dispersed in an Al matrix for three Al-rich quaternary alloys.  相似文献   

6.
Based on special quasirandom structures (SQS’s) and first-principles calculations, enthalpies of mixing have been predicted for four binary fcc solid solutions in the Al–Cu, Al–Si, Cu–Si, and Mg–Si systems at nine compositions (x=0.0625x=0.0625, 0.125, 0.1875, 0.25, 0.5, 0.75, 0.8125, 0.875, 0.9375, where xx is the mole fraction of A atoms in the A–B binary system). The present results are compared with previous first-principles calculations and thermodynamic modeling results available in the literature. In order to provide insight into the understanding of mixing behavior for these solid solutions, the spatial charge density distributions in these binary solid solutions are also analyzed. The results obtained herein indicate that the SQS model can be used to estimate the thermodynamic properties of solid solutions, especially for metastable phases, the thermodynamic qualities of which are rarely measured.  相似文献   

7.
8.
9.
10.
A critical evaluation of all available phase diagram and thermodynamic data for the As–Co and As–Fe binary systems as well as the As–Fe–S ternary system has been performed and thermodynamic assessments over the whole composition ranges are presented using the CALPHAD method. To predict thermodynamic properties and phase equilibria for these systems, the Modified Quasichemical Model (MQM) for short range ordering was used for the liquid phases. The Compound Energy Formalism (CEF) was used for the solid solutions. Since Co and Fe are ferromagnetic, magnetic contributions were added to describe the Gibbs energy of cobalt and iron rich solid solutions. Important uncertainties remain for the liquidus of As-rich regions in the binary subsystems.  相似文献   

11.
12.
The Ti–Si–C and Ti–Si–N systems were thermodynamically reassessed by using the CALculation of PHAse Diagram (CALPHAD) approach. A more suitable Gibbs energies expression of Ti3SiC2 was obtained to fit better with heat capacity data in the Ti–Si–C system. The thermodynamic parameters of the Ti–Si–N system were adjusted based on the revised Ti–Si system. A self-consistent thermodynamic database of the quaternary Ti–Si–C–N system was established. The calculated thermodynamic data and phase diagrams agree well with the experimental data. The CVD (Chemical Vapor Deposition) process for TiSiCN coatings was simulated using the newly evaluated thermodynamic parameters of the Ti–Si–C–N system. A good agreement between the predicted coating composition and the experimental ones was achieved, verifying the reliability of the thermodynamic database obtained in the present work.  相似文献   

13.
The present study is the first Calphad-type assessment of the Cu–Fe–O–Si system. All relevant thermodynamic and phase equilibrium data have been critically evaluated to produce a thermodynamic database describing the Gibbs energies of all phases in the system. The predictive range of the database covers all conditions of pyrometallurgical production of copper in terms of temperature and oxygen partial pressure. Liquid oxide slag and liquid metal phases have been described using two separate solution models, both developed within the framework of the Modified Quasichemical Formalism. Slag model is expressed as [Cu+, Fe2+, Fe3+, Si4+][O2-] and metal model is expressed as (CuI, FeII, OII). They are internally consistent with the models for fcc–Cu, fcc–Fe, bcc–Fe, spinel, wüstite, CuFeO2, Cu2O, Fe2SiO4, Fe2O3 and SiO2 obtained in the previous optimizations of the Cu–O, Fe–O, Cu–Fe, Cu–Fe–O, Cu–O–Si, Fe–O–Si sub-systems.  相似文献   

14.
In this work, the phase equilibria of the Y–Co–Fe ternary system were studied experimentally by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The phase transition temperatures and phase formation of Y–Co–Fe alloys were examined by differential thermal analysis (DTA) and SEM-EDS. No ternary intermetallic compounds were detected. The continuous solid solution phases Y2(Co, Fe)17, Y(Co, Fe)3 and Y(Co, Fe)2 were formed from the respective Y–Co and Y–Fe binary intermetallic compounds. The solubility of Fe in YCo5 and Y2Co7 and the solubility of Co in Y6Fe23 were determined. Based on the experimental results determined in this work and reported in the literature, the thermodynamic calculation of the Y–Co–Fe ternary system was performed using the CALPHAD method in combination with the previous assessments of three Y–Co, Y–Fe and Co–Fe binary systems. The liquidus projection, isothermal sections and vertical sections of this ternary system were calculated. The good agreement between the calculated results and the experimental results was achieved. A set of self-consistent thermodynamic parameters for describing various phases in the Y–Co–Fe ternary systems was obtained finally, which would provide a good basis for the development of the thermodynamic database of multi-component Y–Co–Fe based alloy systems.  相似文献   

15.
Based on the critical evaluation of the experimental data available in the literature, the isothermal section of the Fe–Si–Zn system at 873 K was measured using a combination of X-ray analysis and scanning electron microscopy with energy-dispersive X-ray analysis. No ternary phase is observed at 873 K. A thermodynamic modeling for the Fe–Si–Zn system was then conducted by considering the reliable experimental data from the literature and the present work. All the calculated phase equilibria agree well with the experimental ones. It is noteworthy that a stable liquid miscibility gap appears in the computed ternary phase diagrams although it is metastable in the three boundary binaries.  相似文献   

16.
Phase equilibria in the Bi–Cu–Ni ternary system have been studied using differential thermal analysis (DTA) as well as by using the calculation of the phase diagram (CALPHAD) method. Literature experimental phase equilibria data and DTA results from this study were used for thermodynamic modeling of the Bi–Cu–Ni ternary system. Isothermal sections at 300, 400, and 500 °C, vertical sections from bismuth corner with molar ratio Cu:Ni=1/3, 1/1 and 3/1 and vertical section at 40 at.% Cu were calculated and compared with corresponding experimental results. Reasonable agreement between the calculated and experimental data was observed in all cases.  相似文献   

17.
The phase equilibria of the ternary Cu–Mn–Ni system in the region above 40 at.% Mn at 600 °C were investigated by means of optical microscopy, X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and electron probe microanalysis. The isothermal section of the Cu–Mn–Ni system at 600 °C consists of 4 two-phase regions (cbcc_A12 +fcc_A1, cub_A13 +fcc_A1, cbcc_A12 + cub_A13, L10L10 +fcc_A1) and 1 three-phase region (cbcc_A12 +cub_A13 +fcc_A1). The disordered fcc_A1 phase exhibits a large continuous solution between γγ(Cu,Ni) and γγ(Mn). The L10L10 phase only equilibrates with fcc_A1 phase, and the solubility of Cu in L10L10 phase is up to 16 at.%. A thermodynamic modeling for this system was performed by considering reliable literature data and incorporating the current experimental results. A self-consistent set of thermodynamic parameters was obtained, and the calculated results show a general agreement with the experimental data.  相似文献   

18.
The liquidus surface projection and isothermal section at 1273 K of the Ni–Ti–V system were established using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersion spectroscopy (EDS), electron probe micro-analyzer (EPMA) and differential thermal analysis (DTA) techniques. Six primary solidification regions and four invariant reactions were deduced in the liquidus surface projection, and six three-phase regions were derived in the isothermal section at 1273 K. No ternary compound was observed. According to the experimental results in the present work and literatures, the Ni–Ti–V system was modeled by means of the CALPHAD (CALculation of PHAse Diagram) method. Two-sublattice model (Ni,Ti)10(Ni,Ti)20 for binary σ phase was used, and the thermodynamic parameters of the σ and NiV3 phases in the Ni–V system was reassessed. Solution phases (liquid, fcc, bcc and hcp) were modeled with the substitutional solution model in the Ni–Ti–V system. The compounds, Ni3Ti, NiTi2, Ni3V and σ, were treated as (Ni,Ti,V)m(Ni,Ti,V)n, and B2 were treated as (Ni,Ti,V)0.5(Ni,Ti,V) 0.5Va3. A set of self-consistent thermodynamic parameters of individual phases was obtained.  相似文献   

19.
The liquidus surface projection and isothermal sections at 1173 and 1373 K of the Ni–Ti–W system were constructed on the basis of microstructure and phase constituents of as-cast and annealed alloys, which were obtained by means of scanning electron microscopy (SEM) coupled with energy dispersion spectroscopy (EDS), X–ray diffraction (XRD). Six primary solidification regions were determined in the liquidus surface projection. Five and six three-phase regions were derived in the isothermal sections at 1173 and 1373 K, respectively. No new ternary compounds were found. Based on the present experimental data, the Ni–Ti–W system was optimized using CALPHAD (CALculation of PHase Diagram) method. The solution phases, liquid, fcc, bcc, and hcp, were treated as substitutional solution. Two compounds Ni3Ti and NiTi2 were treated as (Ni,Ti,W)m(Ni,Ti,W)n, and Ni4W was treated as (Ni,Ti)4W1 by a two-sublattice model. NiTi with B2 crystal structure was treated as the ordered phase of bcc solution, and model was (Ni,Ti,W)0.5(Ni,Ti,W)0.5(Va)3. A set of self-consistent thermodynamic parameters was obtained.  相似文献   

20.
Among the ternary borides, the Mo–Co–B system is of great interest because of its excellent hardness, toughness, and stability performance. Eight samples with 60 at.% Co were designed to investigate the isothermal section of Mo–Co–B system at 1073 K in the Co-rich portion. Scanning electron microscopy, energy-dispersion spectroscopy, electron probe microanalysis, differential scanning calorimetry, and X-ray diffraction were used to investigate the phase equilibria of the samples. The formation enthalpies of the ternary borides were obtained by first-principles calculations to serve as key information for thermodynamic assessment. By coupling the reviewed experimental data from the literature, the presently determined phase equilibria, and the calculated formation enthalpies of the compounds, the thermodynamic parameters for the Mo–Co–B ternary system were optimized and used to calculate the isothermal sections, vertical section, and liquidus projection of the system. Comprehensive comparisons showed that the calculated results are in reasonable agreement with the reported phase diagram and thermodynamic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号