首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
目前退役磷酸铁锂正极材料的回收主要是通过选择性浸出回收锂,已实现工业化运行。然而,退役磷酸铁锂正极材料中锂回收后残留的磷铁渣尚未出现有效的处理方法,亟待解决。提出一种盐协助碳热还原—水浸分离法,先通过K2CO3和碳热还原共同作用将FePO4转化为Fe和磷钾化合物,再通过水浸方式将铁和磷分离。系统研究了碳热还原条件对铁磷分离效果的影响。结果表明,在焙烧温度900 ℃、焙烧保温时间4.0 h、K2CO3与磷铁渣质量比0.7、碳粉与磷铁渣质量比0.3的条件下,焙烧产物经常温水浸分离,Fe的回收率为99.3%,水浸固体产物经磁选分离可得到Fe含量为95.2%的产物,实现了磷铁渣中铁与磷的高效分离。本工艺具有不使用强酸、回收过程简单、磷铁渣利用率高等优点,具有工业应用潜力。  相似文献   

2.
以废旧三元正极材料作为原料,提出了还原焙烧与氨基磺酸浸出相结合的工艺,提高锂的回收效率,同时实现组分的分步分离回收。在焙烧温度650 ℃、碳用量10%、还原焙烧时间90 min条件下,三元正极材料被还原为Li2CO3、NiO、MnO、Ni、Co的混合物,还原焙烧产物分步浸出,水浸回收锂,酸浸回收镍、钴、锰。采用氨基磺酸浸出水浸渣,最佳酸浸条件:氨基磺酸浓度0.75 mol/L、浸出温度60 ℃、固液比28 g/L、浸出时间40 min,此条件下镍、钴、锰的浸出率分别可以达到98.77%、98.71%、98.45%。  相似文献   

3.
采用碳还原焙烧—水浸法从废旧三元锂离子正极材料中优先选择性提Li,通过热力学分析,结合XRD、ICP等检测手段,研究了焙烧温度、焙烧时间、配碳量对Li浸出率的影响。结果表明,可以通过碳还原焙烧—水浸法优先提取三元锂离子正极材料中的Li,焙砂中Li以Li2CO3形式存在,在焙烧温度750 ℃、焙烧时间1 h,配碳量20%的条件下,Li浸出率达到97.85%,实现了优先选择性提Li。  相似文献   

4.
以废旧三元锂电混合电极材料为原料,通过预处理除杂和多段焙烧,实现高效选择性优先提锂。采用单因素试验确定了碳热还原的最优工艺条件:焙烧温度700℃、焙烧时间120 min。在最优热处理条件下,通过热解—水力搅拌—筛分—碱浸脱除有机质和铝箔,锂回收率从85.22%提高至92.70%;通过二段焙烧水浸,锂回收率可进一步提升至94.16%。  相似文献   

5.
针对废旧三元正极材料回收过程中工艺流程长、酸碱消耗高、锂直收率低、回收成本较高等问题,提出了助剂焙烧常温水浸联合新工艺,选择性提取废旧三元正极粉料中的锂,实现锂与其他金属(镍、钴、锰)的高效分离。新工艺以试剂A(无机酸)、试剂B(无机酸盐)为助剂,通过低温煅烧转化与常温水浸技术,提高废旧三元正极材料中锂的直收率,研究了煅烧温度、助剂与正极材料质量比、浸出液固比等条件对金属浸出率的影响。结果表明,在煅烧温度600℃、助剂A添加量为正极材料质量的50%、助剂B添加量为正极材料质量的5%、煅烧时间2h、水浸液固比3mL/g的条件下,Li浸出率达95%以上,浸出液中Li+浓度21g/L以上,其他金属(Ni、Co、Mn)含量均小于1mg/L。  相似文献   

6.
针对目前废旧磷酸铁锂处理工艺存在耗能高、污染大等问题,探索了一种废旧磷酸铁锂电池正极材料氯化焙烧工艺。焙烧过程中,以NH4Cl作为氯化剂,实现锂和部分金属物相转型,形成可溶性的氯化盐。探究NH4Cl用量、焙烧温度、焙烧时间、气氛条件等对氯化过程的影响。试验结果表明,废旧磷酸铁锂正极材料经氯化焙烧转型,可实现Fe、Al在氧化性气氛中转化为Fe2O3、FeOCl和AlPO4等难溶物,在水浸过程中原料中的不溶性杂质和难溶的Fe、Al化合物进入渣相,Li部分转化为可溶性物质,从而选择性浸出至溶液。本方案能够选择性从废旧磷酸铁锂电池中提取最有价值的金属锂,实现资源的回收、高效利用。  相似文献   

7.
废旧锂离子电池的无害化处理和资源化回收是保护环境、节约资源、促进循环经济发展的必然选择。提出了一种钠盐焙烧—常温水浸工艺,用于从废旧磷酸铁锂电池中回收锂。系统研究了硫酸钠添加量、焙烧温度、焙烧时间等对锂选择性浸出的影响,并对焙烧产物进行了XRD和SEM表征。结果表明,在硫酸钠与磷酸铁锂正极粉质量比为1.6、焙烧温度650 ℃、焙烧时间2.0 h、水浸时间15 min的条件下,锂的浸出率达到96.81%,回收得到的硫酸锂产品纯度达到97.36%。与传统方法相比,该工艺具有不使用强酸、高效锂铁分离、回收过程简便等优势,具备广泛的工业应用前景。  相似文献   

8.
以废弃三元锂离子电池正极材料(spent-NCM)为研究对象,葡萄糖(C6H12O6)为焙烧剂,采用焙烧—水浸工艺实现锂的选择性优先浸出。结果表明,在600℃焙烧90 min、C6H12O6与spent-NCM质量比25%、浸出液固比20 mL/g的条件下,spent-NCM中的有价金属元素转变为水溶性的Li2CO3和不溶性的Ni、Co和MnO,焙烧产物经水浸可选择性优先分离Li, Li的浸出率为95.62%。  相似文献   

9.
以废三元锂离子电池正负极片为原料,采用碳热还原焙烧—水浸联合法,通过热力学、TG-DSC分析,结合XRD、SEM-EDS等表征手段,为正极活性材料与铜铝箔之间热解分离、有价金属(Ni、Co、Mn)的还原及Li的优先提取进行相关理论研究分析,并简单分析了P和F的走向。结果表明,正极活性材料有价金属碳热还原理论上是可行的,且经XRD、SEM-EDS表征,焙烧后有价金属Ni、Co、Mn主要以金属或金属氧化物形式存在,Li则以Li_2CO_3形式存在,且Ni、Co、Mn含量分布不均匀。在碳含量27.33%、焙烧温度650℃和焙烧时间2.5h的最佳条件下,Li的浸出率达到83.17%,但该条件下,正极活性材料与铜铝箔分离效果不是很好,给后续酸浸净化回收Ni、Co、Mn带来一定的麻烦;P和F的走向为原料→焙烧料→水浸渣。  相似文献   

10.
以废旧三元锂电池正极材料为研究对象,采用碳热还原—水浸—高温固相焙烧流程实现选择性回收Li和Ni、Co、Mn再利用的闭环回收工艺。在焙烧温度650 ℃、焙烧时间2 h、碳添加量10%、浸出时间1 h、固液比30 g/L的最佳条件下,Li浸出率为91.04%,浸出液循环浸出三次,可将浸出液Li浓度从1.01 g/L提高至2.68 g/L。浸出液蒸发结晶制备Li2CO3,主要成分为Ni、Co、MnO的浸出渣在空气氛围下焙烧制备三元前驱体,再将Li2CO3和三元前驱体混合研磨进行焙烧,获得再生三元材料。  相似文献   

11.
关亚君 《有色冶炼》2006,35(6):32-35
进行了焙烧脱氟氟-酸浸-氧化除杂-电解工艺处理铅烟化炉次氧化锌的研究。试验结果:锌直收率87.02%,回收率89.25%,阴极锌质量100%达0^#锌品级。  相似文献   

12.
伴随着便携式电子产品的快速更迭和新能源动力汽车行业的迅猛发展,大量的锂离子电池迎来报废退役,其回收迫在眉睫。焙烧—水浸联合工艺不仅改进了传统火法熔炼工艺存在的高能耗、锂难以有效分离等问题,又解决了湿法回收工艺过程试剂耗量大、废水处理等缺点,将是失效锂离子电池正极材料有效处理回收工艺发展的未来趋势及前进方向。综述了当前联合工艺处理失效锂离子电池正极材料的研究进展,主要分为还原焙烧、盐化焙烧两大类,盐化焙烧工艺极大降低了所需焙烧温度,根据添加剂的不同可细分为硫酸化焙烧、氯化焙烧、硝化焙烧。通过对比分析不同联合工艺的优势和不足,总结展望联合工艺未来的发展趋势及前景,为未来研发更加清洁高效的回收工艺提供参考。  相似文献   

13.
采用苏打还原焙烧—水浸工艺、硫酸焙烧—水浸工艺从某含锡钨萤石中矿中综合回收钨、锡和氟,考察苏打加入量、还原剂煤与苏打配比,硫酸加入量、碳酸铵加入量以及控制溶液终点pH等对回收的影响。研究表明,采用中矿两次硫酸焙烧——洗矿——碳酸铵浸出——盐酸浸出工艺,分解原料中99.95%的氟,钨总浸出率为98.04%,锡保留率为17.70%。该工艺指标较好,三废可达标排放,经济效益明显。  相似文献   

14.
湿法回收是目前回收失效锂离子电池正极材料的主要方法,浸出是该方法的一个关键流程,而工业生产中一般采用槽式浸出,该体系不是封闭的,在反应过程中由于物料中残余的一些杂质在酸性体系下会产生气体,严重恶化生产环境,同时反应会消耗大量的酸碱试剂及氧化剂,并产生大量废水、废酸。针对这些问题,提出采用管式反应器浸出失效锂离子电池正极材料方案,本实验的原料为失效钴酸锂正极材料,研究了不同条件对浸出效果的影响,发现过氧化氢的浸出效果并不理想,并通过采用葡萄糖等固体还原剂,有效地提高浸出率。相同条件下,对比过氧化氢和葡萄糖,钴和锂的浸出率分别从59.18%、92.57%提高到85.95%、99.47%。   相似文献   

15.
研究了硫酸法从锂磷铝石中提取锂的工艺。研究结果表明, 当矿物与硫酸质量比为1:0.4、焙烧温度为780~820℃、浸出液固质量比为1.6:1时, 锂提取率达96%以上; 将硫酸锂溶液用NaOH调节pH值为12, 可彻底去除溶液中的Al3+、Fe3+、PO43-杂质, 所得硫酸锂溶液用EDTA络合Ca2+后, 与Na2CO3溶液反应可获得电池级碳酸锂。针对混酸料呈稀糊状和物料中的氟元素难处理两大问题展开工艺优化工作。在混酸料中加入吸水性物质, 可改善物料的稀糊状态, 有利于后续工业化生产; 将锂磷铝石煅烧后再混酸焙烧, 可消除混酸料的稀糊状, 锂提取率达97%以上; 酸化时在280℃左右进行保温反应, 能驱氟、降低硫酸锂溶液中的氟离子含量, 氟可以回收; 尾渣中AlPO4有较高的回收价值。   相似文献   

16.
废阴极炭块是铝电解槽大修时产生的危险固体废弃物,由于长期受到电解质的侵蚀而含有大量可溶性氟化物,堆存或填埋处理将造成严重的环境污染。主要研究了废阴极炭块中氟化钠的浸出动力学,揭示了温度、粒度、液固比等因素对铝电解废阴极炭块中氟化钠浸出的影响。结果表明:在液固比25mL/g、温度85℃、粒度0.058~0.075mm的条件下浸出1h,可溶氟浸出率可达98.9%,浸出渣中可溶氟含量为83.53mg/L,低于100mg/L的安全排放标准,可实现废阴极炭块的无害化处理;浸出过程符合固体膜层内扩散控制的收缩核模型,表观活化能为8.97kJ/mol。  相似文献   

17.
稀土电解熔盐渣经过氧化钙和硫酸铝协同焙烧活化得到焙烧渣,采用硫酸浸出高效提取焙烧渣中稀土、锂、氟,系统考察了不同酸浸条件对稀土、锂、氟浸出率的影响。针对较优酸浸条件下的浸出液,用硫酸钠沉淀析出稀土复盐沉淀,实现稀土分离。结果表明:较优酸浸条件为硫酸浓度4 mol/L、液固体积质量比10:1(单位:mL/g)、浸出温度90 ℃、浸出时间4 h,熔盐渣中镨、钕、钆、锂、氟的浸出率分别为95.83%、96.55%、93.06%、95.52%、94.85%。稀土复盐沉淀纯度高,稀土回收率达99.3%以上。该方法可以高效回收稀土熔盐电解渣中稀土、锂、氟有价元素,对提升稀土熔盐电解渣的全组分利用具有重要意义。   相似文献   

18.
对铝电解废旧阴极炭块进行XRD分析,了解物相成分后反复水浸,研究水浸次数及温度对铝电解废旧阴极炭块中不同电解质浸出情况。每次水浸实验采用1~2 mm的废旧阴极炭粒,固液质量比1:5的条件下进行实验,过滤得到水浸液和炭粒,蒸发结晶水浸液并进行物相分析。实验结果表明,铝电解废旧阴极炭浸出蒸发结晶量随温度的升高,第1次浸出蒸发结晶量最大,再次水浸蒸发结晶中氟的百分含量增大。浸出温度增加30 ℃后首次浸出氟含量是升温前第1次浸出和第2次浸出氟含量总和。130 ℃浸出F、Al、Na效果较优。   相似文献   

19.
本文根据生产实践,以分析系统含锰变化时锌湿法生产情况为出发点,指出高锰时短期应采取降低酸锌比同时配合减少锰粉加入量的技术措施,长远应考虑如何解决老电解锌厂系统内累积杂质有效开路的问题,并结合锌浸出渣二次洗涤前后杂质变化,总结系统锰的平衡。  相似文献   

20.
研究了机械活化碱分解钨矿过程杂质的浸出行为。原料中的钙对杂质具有明显的抑制效果 ,随原料中钙含量的增加 ,磷、砷、硅的浸出率明显降低。对WO3 品位为 49 5 3%、杂质含量基本接近的高杂钨中矿 ,在相同分解条件下 ,原料中的钙由质量分数 1 6 3%增加至 9 95 %时 ,磷、砷、硅的浸出率分别由 45 98%、35 70 %和15 96 %降为 9 2 9%、2 6 2 %和 1 10 % ;当钨中矿含Ca(质量 ) >6 %时 ,所得溶液的质量优于分解标准黑钨精矿的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号