首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a dual polarized, proximity‐fed monostatic patch antenna (single radiator for both transmit and receive modes) with improved interport isolation for 2.4 GHz in‐band full duplex (IBFD) applications. The proximity‐fed radiating patch offers comparatively wider impedance bandwidth for presented design. Very nice self‐interference cancelation (SIC) levels for intended impedance bandwidth have been achieved through differential receive (Rx) mode configuration. The differential Rx mode based on 180° ring hybrid coupler acts as a signal inversion mechanism for effective suppression or cancelation of in‐band self‐interference (SI) that is, the leakage from transmit port. The implemented prototype of proposed antenna achieves ≥87 dB peak isolation for dual polarized IBFD operation. Moreover, the recorded interport isolation for validation model ≥60 dB within 10 dB‐return loss bandwidth of 90 MHz (2.36‐2.45 GHz). The measured radiation characteristics of implemented antenna demonstrate nice gain and low cross‐polarization levels for both transmit (Tx) and receive (Rx) modes. The dimensions of implemented antenna are 70 × 75 × 4.8 mm3. The novelty of this work is wide‐band SIC performance for monostatic antenna configuration with compact structure of presented design.  相似文献   

2.
A planar dual circularly polarized slot antenna is presented. The designed antenna has two tilted “8” shaped slots fed by microstrip lines, one each for transmission (TX) and reception (RX) operations. The isolation between the two ports (TX and RX) is augmented by means of an interdigital capacitor based bandstop filter. The proposed antenna has an impedance bandwidth of 361 MHz centered at 2.293 GHz (2.113‐2.474 GHz) with the isolation between the ports being >17.6 dB which goes up to a value as high as 46 dB within the band of operation. The 3 dB axial ratio (AR) bandwidth is 11.52% centered at 2.1275 GHz (2.005‐2.25 GHz). Because of its high inter‐port isolation within the AR bandwidth, the design is suitable as a full‐duplex antenna for applications in S‐band.  相似文献   

3.
This article presents a triple‐slotted substrate integrated cavity (SIC)‐fed 2 × 2 metasurface antenna. Three modes can be obtained including TM10 mode of the metasurface, TE210, mode and TE310 mode of the SIC. The TE210 mode of SIC radiates through the two side slots and is coupled to the metasurface mainly by the two side slots, while the TE310 mode of SIC is mainly coupled to the metasurface by the middle slot. Comparing with the reported SIC‐backed slot antenna, dual‐slotted SIC‐fed patch antenna or the metasurface antenna, the proposed antenna exhibits the advantage of wide bandwidth with flat gain. One prototype operated at 10 GHz was fabricated and measured with 10‐dB fractional bandwidth of 33%, the gain of 8.1 dBi at the center frequency, the cross polarization level of 20 dB and the gain ripple of 1.5 dB.  相似文献   

4.
A novel square ring printed antenna has been suggested for dual‐band circular polarization (CP). The geometry contains a square patch and a square ring structure for dual‐band operation. Circular polarization is achieved using triangular cut at the boundary and right angle bend with inner perturbation. The suggested antenna is excited from the lower layer through electromagnetic (EM) coupling technique. The antenna shows good impedance bandwidths of 90 MHz (2.43‐2.52 GHz) and 800 MHz (5.7‐6.5 GHz, respectively. The antenna shows 3 dB axial ratio bandwidth of 20 MHz at lower band and 120 MHz at upper band with improved gain > 6 dBi. The simulated and measured results are well agreed with each other. The antenna is promising wideband operation at the upper band. This antenna was implemented on fiberglass reinforcement laminated Arlon substrate with dielectric constant (?r = 2.55), and the overall physical dimension of 30 × 30 × 3.048 mm3. The designed antenna can be extensibly applicable in WLAN/Wi‐MAX communication. The presented antenna is designed using hyperlynx IE3D and the simulated results are presented.  相似文献   

5.
This article presents a dual‐polarized filtering patch antenna, which uses two orthogonal modes (TE210/TE120) of the substrate integrated cavity (SIC) to couple with two orthogonal modes (TM10/TM01) of the patch by the cross slot, respectively. The second‐order filtering response on dual polarizations can be achieved by using just one SIC resonator and one slotted square patch, which display simple structure of the proposed antenna. The slotted square patch provides a new way to obtain same external quality factor of the radiator on dual polarization, which makes the performances on two polarizations agree well with each other when changing the bandwidth. High isolation can be achieved by controlling the space of the vias of the SIC. Radiation nulls can be produced by connecting the coupled lines with the feeding lines in parallel. A prototype with the entire height of 0.019 λ0 (λ0 is the free‐space wavelength at center frequency) achieves a 10‐dB bandwidth of 1.6%, the gain of 4.9 dBi at the center frequency, the port isolation of 43 dB, and the out‐of‐band rejection level of 25 dB.  相似文献   

6.
A four‐port multiple input multiple‐output (MIMO) antenna with common radiating element is proposed for 2.4 GHz Wi‐Fi applications. It comprises a modified circular radiator fed by four identical modified feedlines, partial ground planes, and a diagonal parasitic element (DPE). The parasitic element is used to enhance the interport isolation. The antenna has a 2:1 Voltage standing wave ratio (VSWR) impedance band 2.34‐2.56 GHz and nearly omnidirectional radiation patterns. The radiation efficiency is more than 79% and gain is 2 dBi at resonant 2.43 GHz. The isolation in the given frequency band is 10 dB. At the 2.43 GHz, the isolation between adjacent ports (1, 2 and 1, 4) is 14 dB and between opposite ports (1, 3) is 12 dB. The mean effective gain (MEG) ≤ ?2.7 dB and envelope correlation coefficient is <0.01. The ?10 dB total active reflection coefficient bandwidth is 202 MHz. The antenna is designed for a Wi‐Fi device and the effectiveness of antenna has been checked for distance of ½ feet from the human head. The specific absorption rate (SAR) is found to be ≤0.17 W/Kg by CST simulation tool.  相似文献   

7.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

8.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

9.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

10.
In this article, a high‐gain and dual‐polarized antenna with UWB operation is proposed. The antenna is composed of two tapered dipoles as radiating elements, which are arranged orthogonally and fed perpendicularly to achieve polarization diversity. A metallic cavity reflector is placed behind the radiator for high gain radiation entire the operating bandwidth. To validate the design method, an antenna prototype is designed, fabricated, and measured. The measured results demonstrate that the proposed design has good performance with |S11| ≤ ?10 dB and isolation ≥20 dB over a frequency band 3.2‐8.8 GHz, equivalently to about 93.3%. In addition, unidirectional radiation pattern and broadside gain of from 8.1 to 11.8 dBi are obtained across the operating bandwidth.  相似文献   

11.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.  相似文献   

12.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

13.
A novel dual‐band, dual‐circularly polarized antenna is proposed and fabricated. The proposed antenna consists of an asymmetric U‐shaped slot and an inverted L‐shaped slot which are designed to excite two orthogonal E vectors with equal amplitude and 90° phase difference (PD), in addition, fed by a coplanar waveguide (CPW) Furthermore, a left‐hand circular polarization in the direction of z > 0 and a right‐hand circular polarization instead of the opposite direction both at the lower and upper bands are exhibited by the radiations of the antenna. Good agreement is achieved between the measurement and simulation, which indicates that a 10‐dB bandwidth of 38.75% from 2.56 to 3.8 GHz and 21.8% from 10.01 to 12.53 GHz, while a 3‐dB axial‐ratio bandwidth (ARBW) of 13.4% from 2.77 to 3.2 GHz and 9.23% from 10.25 to 11.25 GHz at two operation bands, respectively, are covered in the designed antenna. To explain the mechanism of dual‐band dual‐circular polarization, the analysis of magnetic fields distributions and a parametric study of the design are given. Meanwhile, compared to other recent works, a single layer structure, wider axial ratio and impedance bandwidths and a more compact size are the key features of the proposed antenna.  相似文献   

14.
In this article, we investigate bandwidth‐enhancement of a circularly‐polarized (CP) Fabry‐Perot antenna (FPA) using single‐layer partially reflective surface (PRS). The FPA is composed of a single‐feed truncated‐corner square patch antenna, which is covered by the PRS formed by a square aperture array. We revealed that the finite‐sized PRS produces extra resonances and CP radiations for the antenna system, which broadened the impedance matching and axial ratio (AR) bandwidths significantly. For verification, a broadband CP FPA prototype operating near 5.8 GHz was realized and tested. The fabricated antenna with overall size of 125 mm × 125 mm × 23.5 mm achieves a |S11| < ?10 dB bandwidth of 31.7% (5.23‐7.2 GHz), an AR < 3‐dB bandwidth of 13.7% (5.45‐6.25 GHz), the peak gain of 13.3 dBic, a 3‐dB gain bandwidth of 22.38% (5.0‐6.26 GHz), and a radiation efficiency of >91%.  相似文献   

15.
A dual‐mode circularly polarized compact antenna with integrated left‐hand and right‐hand circular polarization (LHCP and RHCP) is presented in this work. A multilayer arrangement of a square patch and square ring structure with an irregular transmission line is analyzed for dual‐band, dual‐CP operation. To realize dual mode propagation the proposed structure is excited using electromagnetic coupling technique. Succeeding proximity feeding with T‐stub match is analyzed, which conveys impedance bandwidth of 180 and 300 MHz within |S11| < ?10 dB at 3.5 and 5.5 GHz. The designed CP elements is suitably arranged with feed line for generating two orthogonal polarization of equal amplitude and a 90° phase difference at both the resonant modes (TM10 and TM01). Alterable LHCP and RHCP performance is realized by altering the compensated position and peculiar angle. Having both LHCP and RHCP polarization this design shows polarization insensitive characteristic. Each LHCP and RHCP antenna element accomplished a 3‐dB AR of 70 and 120 MHz with a gain up to 6 dBi. With a low profile of 0.27λ0 × 0.27λ0 × 0.04λ0, the CP antenna is fabricated, and the performance is validated through experimental analysis. With all the viable characteristics, the antenna is proposed for Wi‐MAX/WLAN communication.  相似文献   

16.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS.  相似文献   

17.
In this article, we have proposed the closed form expressions for the optimized dimensions of different parts of the metallic stepped septum in a circular waveguide. Using these relations, a dual circularly polarized (CP) horn can be realized with good AR bandwidth, impedance bandwidth, and interport isolation. The relations are generalized for application at all frequency bands. Using these relations, horns have been designed and simulated at different frequency bands. Prototypes have been fabricated at some frequency bands and are experimentally validated. This design yields impedance bandwidth (S11 ≤ ?10 dB) of about 18%, AR bandwidth more than 15%, and interport isolation about 24 dB at the band center. Experimental data for the Ka‐band prototype are provided in detail. At the design frequency, the measured axial rations are <1 dB revealing cross‐polar discrimination over 25 dB.  相似文献   

18.
In this article, a dual‐polarized low‐profile microstrip patch antenna with U‐ or M‐shaped feed network is presented. The U‐ or M‐shaped feed network is printed on the same layer, which can achieve dual bands (5.3 and 5.8 GHz) and low profile (0.06 λg). Dual polarizations and high isolation are realized by making use of a quasi‐cross‐shaped slot feeding. Moreover, the port isolation is better than 25 dB, and the antenna gain is above 8.4 dBi for the two ports. And the cross‐polarization levels in both E and H planes are better than ‐30 dB for the two polarization ports, respectively. The design is suitable for array application in MIMO system. Details of the proposed design and experimental results are presented and well agreed.  相似文献   

19.
In this article, the intensive investigations are carried out on a low volume compact flexible antenna for wireless applications with a novel structure model. The proposed model has considered as an elliptical‐ring with split‐triangular patch (ERSTP) antenna with the coplanar waveguide feeding to achieve dual‐bands. The ERSTP antenna is designed with polyimide material having the volume (L a × W a × h) 99 mm3. The ERSTP antenna resonates with 2.60 GHz and 3.48 GHz frequencies with a reflection coefficient of ?21.92 dB and ?32.14 dB and a gain of 2.39 dBi and 1.75, dBi respectively. The impedance bandwidths are 100 MHz and 330 MHz observed at two frequency bands. The proposed ERSTP antenna has operated on mobile‐worldwide interoperability for microwave access (M‐WiMAX) and worldwide interoperability for microwave access (WiMAX) bands respectively. The simulated and measured results of ERSTP antenna are in good agreement.  相似文献   

20.
In this article, a circularly polarized antenna for ultra‐high frequency radio frequency identification (RFID) tag is presented. The circular polarization is realized by two orthogonal, unequal length linearly tapered meander line cross dipoles. The meander structure with capacitive tip loading is used for size miniaturization of the antenna. A modified T‐match network is employed to feed the cross dipole structure. The measured 10‐dB return loss bandwidth of the cross dipole antenna is 17 MHz (908‐923 MHz) and the corresponding 3‐dB axial ratio bandwidth is 6 MHz (912‐918 MHz). The overall size of the proposed antenna is 0.17λ0 × 0.17λ0 at 915 MHz. The maximum read range between the reader and the tag with the proposed antenna is 4.7 m larger than the analogous linearly polarized tag antenna due to the reduction in polarization loss between the tag and reader antennas. Thus, a maximum read range of 15.66 m with the gain of 1.28 dBic is achieved at 915 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号