首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The synergistic effect of iodide ions on the corrosion inhibition of mild steel in 0.5 M sulfuric acid (H2SO4) in the presence of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole (4-MTHT) was investigated using weight loss measurements and different electrochemical techniques such as potentiostatic polarization curves and electrochemical impedance spectroscopy (EIS). The inhibition efficiency (E, %) increased with 4-MTHT concentration, but the desorption potential (E d) remained unchanged with increasing 4-MTHT concentration. The addition of potassium iodide (KI) enhanced E considerably and increased the value of E d. A synergistic effect was observed between KI and 4-MTHT with an optimum mass ratio of [4-MTHT]/[KI] = 4 × 10–2. The synergism parameters (S ) calculated from surface coverage were found to be more than unity. This result clearly showed the synergistic influence of iodide ions on the corrosion inhibition of mild steel in 0.5 M H2SO4 by 4-MTHT. The adsorption of this inhibitor alone and in combination with iodide ions followed Langmuir's adsorption isotherm.  相似文献   

2.
The synergistic effect of iodide ions on the corrosion inhibition of mild steel in 0.5 M H2SO4 solutions by 2,5-bis(4-methoxyphenyl)-1,3,4-thiadiazole (4-MTH) has been studied using electrochemical impedance spectroscopy (EIS) and the Tafel polarisation method. The results showed that the inhibition efficiency increased with 4-MTH concentration while the potential of desorption (E d) remained unchanged. The addition of potassium iodide (KI) in the acid solution stabilized the adsorption of 4-MTH molecules on the metal surfaces and, therefore, enhanced the inhibition efficiency of 4-MTH and increased the value of E d. The synergistic effect was observed between KI and 4-MTH with an optimum mass ratio of [4-MTH]/[KI] = 5/5. The calculated values of synergism parameter (S θ) from the coverage of the surface were found to be more than unity in most cases. This clearly showed the synergistic influence of iodide ions on the corrosion inhibition of mild steel in 0.5 M H2SO4 by 4-MTH. The adsorption of this inhibitor alone and in combination with iodide ions followed Langmuir’s adsorption isotherm.  相似文献   

3.
The corrosion properties of a nanocrystalline low carbon steel coating (SNCLCS) fabricated on a low carbon steel substrate by magnetron sputtering and the bulk steel (BLCS) were investigated in aerated 0.5 M H2SO4 solution by EIS and polarization techniques. The corrosion inhibiting effect of methionine and synergistic KI additives was also studied. The results show that both specimens underwent active corrosion with no transition to passivation in the potential range studied. Surface nanocrystallization was observed to increase the corrosion susceptibility of low carbon steel, leading to a decrease in interfacial impedance and an increase in the kinetics of the anodic reaction. Methionine inhibited the corrosion of both specimens with comparable inhibition efficiencies and iodide ions synergistically increased the inhibition efficiency. This synergistic effect was, however, more pronounced for BLCS. This has been discussed vis-à-vis the more positive surface charge on BLCS compared to SNCLCS.  相似文献   

4.
The synergistic action caused by iodide ions on the corrosion inhibition of mild steel in 0.5 M H2S04 in the presence of dicyclohexylamine (DCHA) has been investigated using potentiodynamic polarization, linear polarization and a.c. impedance techniques. DCHA inhibits the corrosion of mild steel in 0.5 m H2SO4 even at lower concentrations. The inhibition efficiency decreases with increase in the concentration of the amine. The addition of iodide ions enhances the inhibition efficiency to a considerable extent. The adsorption of this compound is also found to obey Langmuir's adsorption isotherm, thereby indicating that the main process of inhibition is by adsorption. The increase in surface coverage values in the presence of iodide ions indicates that DCHA forms an insoluble complex at lower amine concentrations by undergoing a joint adsorption. The synergism parameter (S) is defined and calculated both from inhibition efficiency and surface coverage values. This parameter in the case of DCHA is found to be more than unity, indicating that the enhanced inhibition efficiency caused by the addition of iodide ions is only due to synergism and there is a definite contribution from the inhibitor molecule. Thus, DCHA is then adsorbed by coulombic attraction on the metal surface where the I is already chemisorbed and thus reduces the corrosion rate.  相似文献   

5.
Investigation into the corrosion inhibition of low carbon steel in 0.1-M HCl solution by 1-ethyl-1-methylpyrrolidinium (EMTFB) and the effect of KI addition on the inhibition efficiency was carried out using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy and surface analysis (scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDAX)) techniques. Results show that EMTFB suppresses low carbon steel dissolution in the corrosive environment. Inhibition efficiency increased with the increase in EMTFB concentration. Addition of iodide ions to EMTFB raises inhibition efficiency from 75 to 98%. PDP results indicate that EMTFB affects majorly anodic reactions while EMTFB + KI act as cathodic-type inhibitor. The adsorption of EMTFB onto low carbon steel surface is by physical adsorption mechanism and follows Langmuir adsorption isotherm model. SEM and EDAX results confirm the adsorption of EMTFB alone and in combination with KI onto the steel surface.  相似文献   

6.
The inhibition performance of poly (methacrylic acid) (PMAA) and the effect of addition of iodide ions on the inhibition efficiency for mild steel corrosion in 0.5 M H2SO4 solution were investigated in the temperature range of 303–333 K using electrochemical, weight loss, scanning electron microscopy (SEM), and water contact angles measurements. The results show that PMAA is a moderate inhibitor for mild steel in 0.5 M H2SO4 solution. Addition of small amount of KI to PMAA significantly upgraded the inhibition efficiency up to 96.7%. The adsorption properties of PMAA and PMAA + KI are estimated by considering thermodynamic and kinetic parameters. The results reveal that PMAA alone was physically adsorbed onto the mild steel surface, while comprehensive adsorption mode characterized the adsorption of PMAA + KI. Adsorption of PMAA and PMAA + KI followed Temkin adsorption isotherm. The SEM and water contact angle images confirmed the enhanced PMAA film formation on mild steel surface by iodide ions.  相似文献   

7.
Corrosion inhibitory action of Commiphora caudata extract on the mild steel corrosion in 1 M H2SO4 acid medium is investigated by weight loss and electrochemical studies. The weight loss method shows that the inhibition efficiency increases with the increase of inhibitor concentration, time, and temperature. The polarization studies reveal that the extract acts as a mixed type inhibitor. In electrochemical impedance measurement, the semicircle curves indicated that the charge transfer process controlled the corrosion of mild steel. Thermodynamic parameter such as free energy value was negative, that indicates spontaneous adsorption of inhibitor on mild steel surface. In the presence of inhibitor decreases the activation energy value which shows the chemical adsorption. The Commiphora caudata extract is found to obey Langmuir adsorption isotherm. Scanning electron microscopy, FTIR, and Quantum chemical studies confirmed that the mild steel protect from the corrosion by adsorption of the inhibitor molecules on surface of metal.  相似文献   

8.
Research on non‐toxic inhibitors is of considerable interest in investigations into the replacement of hazardous classical molecules. This paper reports the action of four amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solution with and without Cl?, F? and Fe3+ ions near and at the corrosion potential (Ecorr) using both the polarization resistance method and electrochemical impedance spectroscopy (EIS). Both cysteine and N‐acetylcysteine (ACC) showed higher inhibition efficiency than methionine and cystine. Adsorption of methionine onto a mild steel surface obeys the Frumkin adsorption isotherm and has a free energy of adsorption value (ΔG °ads) lower than those obtained in the presence of cystine, cysteine and ACC whose adsorption isotherms follow that of Langmuir. Both F? and Fe3+ ions stimulate mild steel corrosion while Cl? ions inhibit it. The binary mixtures of methionine, cysteine or ACC with Cl? or F? ions are effective inhibitors (synergism) while the combinations of the amino acid with Fe3+ or the ternary Cl?/F?/Fe3+ mixture have low inhibitive action (antagonism). EIS measurements revealed that the charge transfer process mainly controls the mechanism of mild steel corrosion in phosphoric acid solution in the absence and presence of the investigated additives. The mechanism of corrosion inhibition or acceleration is discussed. © 2002 Society of Chemical Industry  相似文献   

9.
Inhibition of C-steel corrosion by some thiadiazole derivatives (I–VI) in 1 M H2SO4 was investigated by weight loss, potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) techniques. The presence of these compounds in the solution decreases the double layer capacitance, increases the charge transfer resistance and increase of linear polarization. Polarization studies were carried out at room temperature, and showed that all the compounds studied are mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were calculated and discussed. Electrochemical impedance was used to investigate the mechanism of corrosion inhibition. The adsorption of the compounds on C-steel was found to obey Langmuir’s adsorption isotherm. The synergistic effect brought about by combination of the inhibitors and KSCN, KI and KBr was examined and explained. The mechanism of inhibition process was discussed in the light of the chemical structure and quantum-chemical calculations of the investigated inhibitors.  相似文献   

10.
A novel tetrapolymer(TP) consisting of carboxylate, sulphonate, phosphonate and sulfur dioxide based comonomers was synthesized using Butler cyclopoymerization technique. The synthesized tetrapolymer was characterized using FTIR,1 H-NMR,~(13)CNMR and elemental analysis. The performance of the tetrapolymer as a corrosion inhibitor for St37 carbon steel in 15% HCl and 15% H_2SO_4 acid media was assessed using electrochemical impedance spectroscopy(EIS), linear polarization resistance(LPR), potentiodynamic polarization(PDP) and electrochemical frequency modulation(EFM) techniques. The influence of addition of a small amount of KI on the corrosion inhibition efficiency of TP was also assessed. Results obtained showed that the tetrapolymer moderately inhibited the corrosion of St37 steel in the acid media with protection efficiency of 79.5% and 61.1% at the optimum concentration of 1000 mg·L~(-1) studied in HCl and H_2SO_4 media respectively. On addition of 5 mmol·L~(-1) KI to the optimum tetrapolymer concentration, the protection efficiency was upgraded to 90.6% and 93.5% in HCl and H_2SO_4 environment, respectively. The enhanced performance of the polymer in the presence of KI is due to synergistic action deduced from synergism parameter(S1) which was found to be greater than unity.The tetrapolymer afforded the corrosion inhibition of St37 steel in the acid media by virtue of adsorption of the polymer molecules on the steel surface which was confirmed by ATR-FTIR analysis of the adsorbed film extracted from the steel surface. TP + KI formed complex with St37 steel surface in H_2SO_4 solution but not in HCl solution.  相似文献   

11.
In this study natural iron sulfide (FeS2) surface was coated by films of poly(N-vinylcarbazole) (PNVCz), poly(N-vinylcarbazole methylethylketoneformaldehyde resin) (P[NVCz-MEKF-R]), carbazole methylethylketone formaldehyde resin (Cz-MEKFR) and poly(carbazole methyl ethylketone formaldehyde resin) (P[Cz-MEKFR]). The corrosion, photocorrosion, and photoactivity characteristics of coated electrodes were investigated in potassium iodide/iodide (KI/I2) redox electrolyte. The inhibition effect and photoactivity of Cz-MEKF-R, P[Cz-MEKF-R] P[NVCz-MEKFR] and PNVCz homopolymer coatings were compared. Coating performance was tested by polarization and electrochemical impedance (EIS) measurements. The photopotential and photocurrent values of bare and coated pyrite electrodes were obtained under illuminated conditions. The inhibition efficiencies were calculated from corrosion currents obtained by Tafel extrapolation from polarization curves.  相似文献   

12.
Weight-loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were used to study the inhibition of 304 stainless steel corrosion in 1 M H2SO4 at 50 °C by propargyltriphenylphosphonium bromide (PgTPhPBr). The inhibiting effects of propyltriphenylphosphonium bromide (PrTPhPBr) and propargyl alcohol (PA) were also studied for the sake of comparison. For the investigated compounds, Tafel extrapolation in the cathodic region gave a corrosion inhibition efficiency of 98% at 1 × 10–3 M. Adsorption of both PgTPhPBr and PA was found to follow Frumkin's isotherm while adsorption of PrTPhPBr obeys that of Temkin. In the anodic domain, PgTPhPBr acted as a good passivator. The impedance spectra recorded at the corrosion potential (E cor) revealed that the charge transfer process in the inhibited and uninhibited states controls corrosion of 304 stainless steel.  相似文献   

13.
Due to the harmful nature of the traditional inhibitors, in recent years researchers have an interest in using eco-friendly corrosion inhibitors. The plant extracts exhibit efficient corrosion inhibition properties due to the presence of a mixture of organic constituents starting from terpenoids to flavonoids. In the present study the inhibition of corrosion of mild steel in 1N H2SO4 solution using the leaf extract of Pongamia pinnata (P. pinnata) was investigated by the weight loss method, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) technique. Characterization of the leaf extract of P. pinnata was carried out using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. The effect of temperature and immersion time on the corrosion behavior of mild steel in sulfuric acid with different concentrations of P. pinnata was also studied. From the results it was found that the inhibition is mainly attributed to the adsorption of inhibitor molecules on the mild steel electrode surface. It was found that the adsorption of inhibitor molecules takes place according to the Langmuir, Temkin, and Freundlich adsorption isotherms. Kinetic as well as thermodynamic parameters were calculated, also confirming the strong interaction between inhibitor molecules and the electrode surface. The inhibition efficiency (I.E in %) was found to increase with increase in concentration of the inhibitor molecules and the maximum inhibition efficiency was attained at 100 ppm of the leaf extract. From the electrochemical studies it was found that the corrosion process was controlled by a mixed inhibition process and single charge transfer mechanism. Fourier transform infrared spectroscopy (FTIR) provided the confirmatory evidence for the adsorption of the extract molecules on the mild steel surface, which is responsible for the corrosion inhibition. Scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) experiments also confirmed the presence of inhibitor molecules on the mild steel surface. From all these experimental results, it can be concluded that the leaf extract of P. pinnata acted as a good corrosion inhibitor for mild steel in 1N sulfuric acid medium even at lower inhibitor concentrations.  相似文献   

14.
Quinine, a natural product, was investigated as a corrosion inhibitor for low carbon steel in 1.0 m HCl solution. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the inhibition action in the temperature range 20–50 °C. The corrosion of steel was controlled by a charge transfer process at the prevailing conditions. The electrochemical results showed that quinine is an efficient inhibitor for low carbon steel and an efficiency up to 96% was obtained at 20 °C. The inhibition efficiency increases with inhibitor concentration and reaches a near constant value in the concentration range 0.48 mM and above. Application of the Langmuir adsorption isotherm enabled a study of the extent and the mode of adsorption.  相似文献   

15.
The corrosion protection of carbon steel in 1?M HCl by 1-octadecanethiol (ODT) alone and in combination with iodide ions was investigated at ambient temperature using electrochemical impedance spectroscopy and potentiodynamic polarization techniques. Results obtained showed that ODT alone offered low corrosion protection ability at very low concentrations. However, on addition of iodide ions, the corrosion protection potential was enhanced due to synergistic effect. Potentiodynamic polarization data revealed that ODT acts as mixed-type inhibitor influencing both the cathodic hydrogen evolution and anodic metal dissolution reactions. Adsorption of ODT onto the carbon steel surface followed Langmuir adsorption isotherm model. The existence of synergism phenomenon between ODT and iodide ions was confirmed from synergism parameter, which was found to be greater than unity. Quantum chemical calculations provide greater insight into the mechanism of electron transfer and mechanistic aspects of ODT on steel surface.  相似文献   

16.
Abstract

The corrosion inhibition of aluminum in 2?M H2SO4 solution by carboxymethyl cellulose (CMC) alone and in combination with iodide ions has been investigated using electrochemical measurements and surface analysis techniques. The results showed that CMC moderately inhibited aluminum corrosion in the H2SO4 solution, and the inhibition efficiency of CMC was increased with the addition of inhibitor concentration, indicating the physical adsorption mechanism. The synergistic effect of 5?mM KI at all concentrations of CMC was assessed by calculating the synergism parameters, indicating that the increased inhibition efficiency of the CMC caused by addition of iodide ions is due to synergism. Additionally, the analysis of the morphology and composition of the aluminum surface suggests that with addition of iodide ions, more CMC molecules are adsorbed on the aluminum surface, thereby enhancing the inhibition efficiency of CMC.  相似文献   

17.
Application of the electrochemical quartz crystal microbalance (EQCM) to the study of metal corrosion and its inhibition is rather recent. Among the advantages of this technique are its very high sensitivity and the possibility of simultaneous mass variations and voltammogram recording. These characteristics suggest the use of the EQCM for research in very low corrosion rate conditions. This paper reports the results of EQCM measurements on the corrosion inhibition rates of Ni in 0.1m HClO4, in the absence and presence of different inhibitors in free corrosion conditions, for following inhibitors: acridine (A), benzyl quinolinium chloride (BQCl), dodecyl quinolinium bromide (DDQBr), tributylbenzyl ammonium iodide (TBNI) and potassium iodide (KI). The corrosion rate was reduced considerably by KI and TBNI. DDQBr showed a good inhibitive efficiency, while BQCl had only a small effect, and A stimulated corrosion of the Ni. Voltammograms at different scanning rates and the mass variation in the same solutions were recorded. Comparison of the current density and the mass changes provided the basis for a qualitative interpretation of the passivation of Ni and the mechanism of action of the different inhibitors.  相似文献   

18.
Application of the electrochemical quartz crystal microbalance (EQCM) to the study of metal corrosion and its inhibition is rather recent. Among the advantages of this technique are its very high sensitivity and the possibility of simultaneous mass variations and voltammogram recording. These characteristics suggest the use of the EQCM for research in very low corrosion rate conditions. This paper reports the results of EQCM measurements on the corrosion inhibition rates of Ni in 0.1m HClO4, in the absence and presence of different inhibitors in free corrosion conditions, for following inhibitors: acridine (A), benzyl quinolinium chloride (BQCl), dodecyl quinolinium bromide (DDQBr), tributylbenzyl ammonium iodide (TBNI) and potassium iodide (KI). The corrosion rate was reduced considerably by KI and TBNI. DDQBr showed a good inhibitive efficiency, while BQCl had only a small effect, and A stimulated corrosion of the Ni. Voltammograms at different scanning rates and the mass variation in the same solutions were recorded. Comparison of the current density and the mass changes provided the basis for a qualitative interpretation of the passivation of Ni and the mechanism of action of the different inhibitors.  相似文献   

19.
The effect of some mercapto functional azole compounds on the corrosion of mild steel in 1 M hydrochloric acid solution was studied by polarization and electrochemical impedance spectroscopy (EIS). Polarization studies showed depression of cathodic and anodic polarization curves in the presence of mercapto functional azole compounds, indicating mixed type corrosion inhibition of the compounds. Double layer capacitance and charge transfer resistance values were derived from EIS results. Changes in impedance parameters are indicative of adsorption of these compounds on the metal surface. Surface analysis SEM/EDX showing presence of sulfur on the surface confirmed the adsorption of the azole compounds on the mild steel surface as showed by electrochemical methods. Both compounds contain a pyridine-like nitrogen atom and a sulfur atom in their molecular structure, while they differ in only one heteroatom: oxygen in the oxazole ring and pyrrole-like nitrogen in the imidazole ring. The results of the electrochemical techniques revealed that changing the pyrrole like nitrogen atom to oxygen atom in the azole ring results in a decrease of corrosion inhibition performance in hydrochloric acid solution, which could be related to more negative charge on pyrrole-like nitrogen atom in comparison to oxygen atom as depicted by quantum chemical calculations.  相似文献   

20.
The corrosion inhibition of aluminium in alkaline medium was studied at 30 and 40°C in the presence of polyethylene glycol (PEG) using gravimetric (weight loss) and thermometric techniques. The effect of halides (KCl, KBr, and KI) on the inhibitory action of PEG was also studied. It was found that PEG acted as inhibitor for aluminium corrosion in the alkaline medium. Inhibition efficiency increased with increasing inhibitor concentration. An increase in temperature led to increase in both the corrosion rate and inhibition efficiency in the absence and presence of inhibitor and halides. Phenomenon of chemical adsorption mechanism is proposed from the values of Ea, Qads, and ΔG obtained. The adsorption of PEG on the surface of aluminium was found to obey Flory–Huggins and Temkin adsorption isotherms. The synergism parameter, S1 evaluated was found to be greater than unity indicating that the enhanced inhibition efficiency caused by the addition of halides is synergistic in nature. The inhibition efficiency, surface coverage and synergism parameter increased in the order; I?> Br?> Cl? showing that a joint adsorption of PEG and halide ions on aluminium plays a significant role in the adsorption process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号