首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The performance of the boundary and finite element methods for the Helmholtz equation in two dimensions is investigated. To facilitate the comparison, the system of linear equations arising from the finite element formulation is reduced to a smaller system involving the boundary values of the unknown function and its normal derivative alone. The difference between the boundary and finite element solutions is then expressed in terms of a difference matrix operating on the boundary data. Numerical investigations show that the boundary element method is generally more accurate than the finite element method when the size of the finite elements is comparable to that of the boundary elements, especially for the Dirichlet problem where the boundary values of the solution are specified. Exceptions occur in the neighborhood of isolated points of the Helmholtz constant where eigenfunctions of the boundary integral equation arise and the boundary element method fails to produce a unique solution.  相似文献   

2.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Among many efforts put into the problems of eigenvalue for the Helmholtz equation with boundary integral equations, Kleinman proposed a scheme using the simultaneous equations of the Helmholtz integral equation with its boundary normal derivative equation. In this paper, the detailed formulation is given following Kleinman’s scheme. In order to solve the integral equation with hypersingularity, a Galerkin boundary element method is proposed and the idea of regularization in the sense of distributions is applied to transform the hypersingular integral to a weak one. At last, a least square method is applied to solve the overdetermined linear equation system. Several numerical examples testified that the scheme presented is practical and effective for the exterior problems of the 2-D Helmholtz equation with arbitrary wavenumber.  相似文献   

4.
A simple boundary element method for solving potential problems in non‐homogeneous media is presented. A physical parameter (e.g. heat conductivity, permeability, permittivity, resistivity, magnetic permeability) has a spatial distribution that varies with one or more co‐ordinates. For certain classes of material variations the non‐homogeneous problem can be transformed to known homogeneous problems such as those governed by the Laplace, Helmholtz and modified Helmholtz equations. A three‐dimensional Galerkin boundary element method implementation is presented for these cases. However, the present development is not restricted to Galerkin schemes and can be readily extended to other boundary integral methods such as standard collocation. A few test examples are given to verify the proposed formulation. The paper is supplemented by an Appendix, which presents an ABAQUS user‐subroutine for graded finite elements. The results from the finite element simulations are used for comparison with the present boundary element solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
论Helmholtz方程的一类边界积分方程的合理性   总被引:5,自引:0,他引:5  
本文导出了Helmholtz 方程超定边值问题有解的一个充要条件,和用非解析开拓法证明了文[1]中的Helmholtz 方程在外域中的解的边界积分表示式的合理性,并将此类边界积分表示式推广用于带空洞的有限域。这样就比较严密而又浅近地证明了基于该表示式建立起来的间接变量和直接变量边界积分方程的合理性。  相似文献   

6.
A method is presented for the calculation of the electromagnetic field in systems of single-layer or multilayer coaxial cylindrical shells of infinite length excited by an oscillating current source arbitrarily oriented inside the first shell. The electric vector potential T and the magnetic scalar potential Ω are used for the evaluation of the quantities of the problem. The Helmholtz equations for T and Ω are transformed into integral equations by the use of the Green's function method. Applying the boundary element method, three systems of simultaneous equations have to be solved to give the sought field quantity  相似文献   

7.
The treatment of domain integrals has been a topic of interest almost since the inception of the boundary element method (BEM). Proponents of meshless methods such as the dual reciprocity method (DRM) and the multiple reciprocity method (MRM) have typically pointed out that these meshless methods obviate the need for an interior discretization. Hence, the DRM and MRM maintain one of the biggest advantages of the BEM, namely, the boundary-only discretization. On the other hand, other researchers maintain that classical domain integration with an interior discretization is more robust. However, the discretization of the domain in complex multiply-connected geometries remains problematic. In this research, three methods for evaluating the domain integrals associated with the boundary element analysis of the three-dimensional Poisson and nonhomogeneous Helmholtz equations in complex multiply-connected geometries are compared. The methods include the DRM, classical cell-based domain integration, and a novel auxiliary domain method. The auxiliary domain method allows the evaluation of the domain integral by constructing an approximately C 1 extension of the domain integrand into the complement of the multiply-connected domain. This approach combines the robustness and accuracy of direct domain integral evaluation while, at the same time, allowing for a relatively simple interior discretization. Comparisons are made between these three methods of domain integral evaluation in terms of speed and accuracy. This work was partially supported by the United States Department of Energy (DOE) grants DE-FG03-97ER14778 and DE-FG03-97ER25332. This financial support does not constitute an endorsement by the DOE of the views expressed in this paper.  相似文献   

8.
This paper presents the particular solutions for the polyharmonic and the products of Helmholtz partial differential operators with polyharmonic splines and monomials right-hand side. By the application of the Hörmander linear partial differential operator theory, many of the systems can be reduced to a single equation involving the polyharmonic or the product of Helmholtz differential operators. If the inhomogeneous right-hand side of these operators can be removed by the method of particular solutions, then boundary-type numerical methods, such as the boundary element method, the method of fundamental solutions, and the Trefftz method, can be applied to solve these differential equations.  相似文献   

9.
车内声场的数学模型建立   总被引:2,自引:1,他引:1  
本文首先利用Helmholtz方程和Green定理推导出适合多种边界条件的车内声场边界积分方程,然后利用边界元数值分析技术离散方程,得到已知某一封闭空间边界的振动特性求解其内部声压的边界元数学模型。作为验证,本文还对两个实例进行了试验,结果表明边界元计算值与理论值和试验实测值吻合良好。  相似文献   

10.
A boundary element method is developed for the dynamic analysis of plates with variable thickness. The plate may have arbitrary shape and its boundary may be subjected to any type of boundary conditions. The non-uniform thickness of the plate is an arbitrary function of the coordinates x, y. Both free and forced vibrations are considered. The method utilizes the fundamental solution of the static problem of the plate with constant thickness to establish the integral representation for the deflection and, subsequently, by employing an efficient Gauss integration technique for domain integrals the equation of motion is derived as a discrete system of simultaneous ordinary differential equations with respect to the deflections at the Gauss integration nodal points. The equation of motion can be solved using the known techniques for multi-degrees of freedom systems. Numerical results are presented to illustrate the method and to demonstrate its efficiency and accuracy.  相似文献   

11.
A new numerical method is proposed for the boundary element analysis of axisymmetric bodies. The method is based on complex Fourier series expansion of boundary quantities in circumferential direction, which reduces the boundary element equation to an integral equation in (rz) plane involving the Fourier coefficients of boundary quantities, where r and z are the co-ordinates of the (r, θ, z) cylindrical co-ordinate system. The kernels appearing in these integral equations can be computed effectively by discrete Fourier transform formulas together with the fast Fourier transform (FFT) algorithm, and the integral equations in (rz) plane can be solved by Gaussian quadrature, which establishes the Fourier coefficients associated with boundary quantities. The Fourier transform solution can then be inverted into (r, θ, z) space by using again discrete Fourier transform formulas together with FFT algorithm. In the study, first we present the formulation of the proposed method which is outlined above. Then, the method is assessed by using three sample problems. A good agreement is observed in the comparisons of the predictions of the method with those available in the literature. It is further found that the proposed method provides considerable saving in computer time compared to existing methods of literature. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
The authors present a mathematical model for the 3-D nonlinear magnetostatic field based on integral equations with fictitious surface and volume magnetic charges. The solution is performed by the extended boundary element method including surface elements and volume elements. Examples of calculation for both linear and nonlinear magnetic systems are presented. The method has been shown to be accurate and efficient  相似文献   

13.
This paper is concerned with the iterative solution of the boundary element equations arising from standard Galerkin boundary element discretizations of first‐kind boundary integral operators of positive and negative order. We construct efficient preconditioners on the basis of so‐called grey‐box algebraic multigrid methods that are well adapted to the treatment of boundary element matrices. In particular, the coarsening is based on an auxiliary matrix that represents the underlying topology in a certain sense. This auxiliary matrix is additionally used for the construction of the smoothers and the transfer operators. Finally, we present the results of some numerical studies that show the efficiency of the proposed algebraic multigrid preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we present a mesh-free approach to numerically solving a class of second order time dependent partial differential equations which include equations of parabolic, hyperbolic and parabolic-hyperbolic types. For numerical purposes, a variety of transformations is used to convert these equations to standard reaction-diffusion and wave equation forms. To solve initial boundary value problems for these equations, the time dependence is removed by either the Laplace or the Laguerre transform or time differencing, which converts the problem into one of solving a sequence of boundary value problems for inhomogeneous modified Helmholtz equations. These boundary value problems are then solved by a combination of the method of particular solutions and Trefftz methods. To do this, a variety of techniques is proposed for numerically computing a particular solution for the inhomogeneous modified Helmholtz equation. Here, we focus on the Dual Reciprocity Method where the source term is approximated by radial basis functions, polynomial or trigonometric functions. Analytic particular solutions are presented for each of these approximations. The Trefftz method is then used to solve the resulting homogenous equation obtained after the approximate particular solution is subtracted off. Two types of Trefftz bases are considered, F-Trefftz bases based on the fundamental solution of the modified Helmholtz equation, and T-Trefftz bases based on separation of variables solutions. Various techniques for satisfying the boundary conditions are considered, and a discussion is given of techniques for mitigating the ill-conditioning of the resulting linear systems. Finally, some numerical results are presented illustrating the accuracy and efficacy of this methodology.  相似文献   

15.
In this paper, an efficient Kansa-type method of fundamental solutions (MFS-K) is extended to the solution of two-dimensional time fractional sub-diffusion equations. To solve initial boundary value problems for these equations, the time dependence is removed by time differencing, which converts the original problems into a sequence of boundary value problems for inhomogeneous Helmholtz-type equations. The solution of this type of elliptic boundary value problems can be approximated by fundamental solutions of the Helmholtz operator with different test frequencies. Numerical results are presented for several examples with regular and irregular geometries. The numerical verification shows that the proposed numerical scheme is accurate and computationally efficient for solving two-dimensional fractional sub-diffusion equations.  相似文献   

16.
Savruk  M. P. 《Materials Science》2003,39(4):465-471
We propose a new approach to the solution of dynamic problems of the theory of elasticity and fracture mechanics based on the application of the finite-difference method only with respect to time. In this case, the equations of motion are split into homogeneous and inhomogeneous systems of differential equations for the determination of displacements at time nodes. For trivial initial conditions, only the homogeneous system of differential equations is preserved (of the same type as in the dynamic problem in Laplace transforms). Its efficient solution can be obtained by the methods of boundary integral equations or boundary elements.  相似文献   

17.
The fast multipole method (FMM) is very efficient in solving integral equations. This paper applies the method to solve large solid-solid boundary integral equations for elastic waves in two dimensions. The scattering problem is first formulated with the boundary element method. FMM is then introduced to expedite the solution process. By using the FMM technique, the number of floating-point operations of the matrix-vector multiplication in a standard conjugate gradient algorithm is reduced from O(N 2) to O(N 1.5), where N is the number of unknowns. The matrix-filling time and the memory requirement are also of the order N 1.5. The computational complexity of the algorithm is further reduced to O(N 4/3) by using a ray propagation technique. Numerical results are given to show the accuracy and efficiency of FMM compared to the boundary element method with dense matrix.  相似文献   

18.
The Galerkin-type boundary element method (BEM) is an discretization procedure for integral equations, represents itself however compared with classical integral equation methods as an universal tool for the solution of practical engineering problems and can be coupled very easily with finite element substructures. The BEM, whose main advantage lies in the fact that only a surface mesh must be generated, is superior to FEM in special applications, i.e. in elastostatics (notch problems) and fracture mechanics. In this paper the individual steps to solving an elliptical boundary value problem of 3-D linear elasticity theory by way of an equivalent system of boundary integral equations will be explained. For the mathematical investigation of elliptical differential equations and integral equations, the theory of Sobolev spaces has proved to be especially suitable. Basic terms to Sobolev spaces will be introduced so that the reader does not have to refer to textbooks for new terms. The transformation of elliptical boundary value problems to systems of singular and hypersingular integral equations will be explained with help of a Calderón projector, which is defined by using fundamental solutions. The discretization of the obtained integral equations with the Galerkin-type BEM will be presented. Finally the approximation of non-linear problems by using the Galerkin-type BEM will be shown. A numerical test for a strength problem will be discussed shortly.  相似文献   

19.
采用有限元/快速多极边界元法进行水下弹性结构的辐射和散射声场分析。Burton-Miller法用于解决传统单Helmholtz边界积分方程在求解外边界值问题时出现的非唯一解的问题。该文采用GMRES和快速多极算法加速求解系统方程。针对传统快速算法在高频处效率低和对角式快速算法在低频处不稳定这一问题,该文通过结合这两种快速算法形成宽频快速算法来克服。同时该文通过观察不同参数条件设置下,宽频快速多极法得到的数值结果在计算精度和计算时间上的变化,得到最优的参数组合值。最后通过数值算例验证该文算法的正确性和有效性。  相似文献   

20.
基于传递矩阵法、齐次扩容精细积分法和复数矢径虚拟边界谱方法 ,提出了一种求解水下非圆弹性环声散射问题的半解析方法。该方法具有以下几个优点 :(1)采用复数矢径虚拟边界谱方法 ,不仅能保证在全波数域内Helmholtz外问题解的唯一性 ,而且由于虚拟源强密度函数采用 Fourier级数展开 ,克服了用单元离散解法不能用于较高频率范围的缺点 ;(2 )采用齐次扩容精细积分法求解非圆弹性环的状态微分方程 ,其计算结果具有很高的精度 ;(3)耦合方程不需要交错迭代求解 ,提高了计算效率。文中给出了两个典型非圆弹性环在平面声波激励下的声散射算例 ,计算结果表明本文方法是一种求解二维非圆弹性环声散射问题非常有效的半解析法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号