首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶-凝胶法制备了Eu~(3+)掺杂Gd_2TiO_5红色荧光粉,并且用XRD、激发光谱和发射光谱对其结构组成及发光性能进行了表征分析。结果表明,在612nm波长光监测下,荧光粉的激发光谱为一宽带和一系列锐峰,其最佳激发峰出现在467nm处,因此在467nm蓝光激发下,基于Eu3+的5 D0→7F2电偶极跃迁,Gd2TiO5:Eu3+荧光粉发射出强烈的红光。  相似文献   

2.
利用水热法合成了Y2O3:Eu3+荧光粉,并对所制得的样品进行了XRD、SEM以及荧光光谱等表征。荧光测试结果表明,Eu3+掺杂浓度为5%时制备的Y2O3:Eu3+荧光粉荧光强度最好。其最大发射峰位于612 nm,对应于Eu3+的5D0→7F2电偶极跃迁,最大激发波长为240 nm对应于从O2-的2p轨道到Eu3+的4f轨道的电荷转移跃迁。通过对比,发现采用水热法制备的荧光粉要比固相法发光性能更强。  相似文献   

3.
采用固相微波法研究了助熔剂对MgAl2O4∶ Eu3+荧光粉发光性能的影响.利用XRD和荧光光谱仪对合成产物的物相和发光光谱进行研究,分别探讨了助熔剂的类型及含量对发光性能影响.结果表明,加入NaF,CaF2,B2O3和GeO2为助熔剂时可得到红色发光材料;MgAl2O4∶Eu3+荧光粉主发射峰位于612 nm处,对应Eu3+的5D0→7 F2电偶极跃迁,次强发射峰位于589 nm处,为Eu3+的5D0→7F0的跃迁,Eu3+离子处于非对称中心格位.相对于氟化物,氧化物助熔剂有助于提高样品的发光强度,其中,以B2O3为助熔剂时荧光粉的发光强度最高,其最佳掺杂量为4.5wt%.  相似文献   

4.
采用共沉淀法制备了Eu~(3+)掺杂Na_(0.45)La_(3.16)W_5O_(20)红色荧光粉,利用XRD、荧光光谱等方法对荧光粉的组成结构及发光性能进行了表征。结果表明,Na_(0.45)La_(3.16)W_5O_(20):Eu~(3+)荧光粉在612nm波长光监测下的激发光谱是由一宽带和系列锐峰组成,其最强激发峰位于蓝光465nm处,这与目前被广泛使用的蓝光LED芯片的输出波长以及商业化生产的460nm光源相匹配。该荧光粉可以被465nm蓝光有效激发,得到614nm处Eu~(3+)非常强的5D0→7F2电偶极跃迁发射峰,是一种能够较好应用在近紫外激发的白光LED用红色荧光粉材料。  相似文献   

5.
以尿素为燃料,采用溶液燃烧法合成出M2P2O7:Eu3+(M=Ba,Sr,Ca)红色荧光粉。利用X射线衍射和荧光光谱研究了激活剂Eu3+对3种荧光粉晶体结构和发光性能的影响。结果表明,制得样品分别为纯相的六方晶系Ba2P2O7、正交晶系Sr2P2O7和四方晶系Ca2P2O7。光谱分析表明,M2P2O7:Eu3+(M=Ba,Sr,Ca)的激发峰位置和发射峰位置均基本相同。M1.95P2O7:0.05Eu3+(M=Ba,Ca)发射红光,其对应于5D0→7F2电偶极跃迁的612nm发射峰强度高于对应于5D0→7F1磁偶极跃迁的588nm和593nm发射峰,说明Eu3+在M2P2O7(M=Ba,Ca)基质中处于非对称格位;而Sr1.95P2O7:0.05Eu3+发射橙红光,Eu3+在Sr2P2O7基质中处于对称格位。在394nm激发下,M1.95P2O7:0.05Eu3+(M=Ba,Sr,Ca)的色度坐标分别为(0.35,0.21)、(0.24,0.15)、(0.35,0.21)。这3种荧光粉均能被394 nm紫外光和464 nm蓝光有效激发,发射红光或橙红光。  相似文献   

6.
采用高温固相合成法在还原气氛中制备了(Lu1–xTbx)3Ga5O12荧光粉,研究了其晶体结构、光致发光性能以及Tb3+掺杂浓度对荧光粉性能的影响规律与机制。研究表明:荧光粉具有石榴石型晶体结构,当x增加时,晶格膨胀。荧光粉的激发光谱由归属于Tb3+的4f 8→4f 7 5d1跃迁的A、B两个宽激发带以及归属于4f 8→4f 8跃迁的一些窄谱峰构成;随x的增加,A、B带发生红移,带间距缩小。在紫外光激发下,荧光粉发射绿光;发射光谱对应于Tb3+的5D4→7FJ和5D3→7FJ跃迁,其中5D4→7F5跃迁发射最强。5D4→7FJ各跃迁发射的浓度猝灭以交互作用为主,猝灭浓度xm=0.08。与5D4→7FJ跃迁相比,5D3→7FJ猝灭浓度低,猝灭机制以电偶极–电偶极相互作用下交叉弛豫为主。  相似文献   

7.
杨志平  韩月  宋延春  赵青  潘飞 《硅酸盐学报》2012,40(11):1631-1635
采用高温固相法制备了适合于近紫外、蓝光激发的Sr2–xZnMoO6:xEu3+红色荧光粉。研究了Eu3+掺杂量对样品发光性能的影响。XRD谱显示合成样品为纯相Sr2ZnMoO6晶体。激发光谱由一系列尖峰和电荷迁移带组成,主激发峰位于395nm和465nm处,对应于Eu3+的7F0→5L6和7F0→5D2跃迁。在395nm和466nm激发下,主发射峰分别位于597nm和624nm,对应Eu3+的5D0→7F1和5D0→7F2跃迁。随着Eu3+掺杂量的增加,发射光谱强度先增大后减小,Eu3+最佳掺杂量为0.2。研究了分别以Cl–、Li+、Na+和K+作为电荷补偿剂对发光性能的影响,结果显示Li+补偿效果最为显著。  相似文献   

8.
白光二极管用荧光粉LiBaPO_4:Tb~(3+)的制备及发光性质   总被引:2,自引:0,他引:2  
采用高温固相法合成白光发光二极管用绿色荧光粉LiBaPO4:Tb3+,并研究荧光粉的发光性质。测定荧光粉的激发光谱和发射光谱,发射峰由位于436nm(5D3→7F4)、490nm(5D4→7F6)、544nm(5D4→7F5)、587nm(5D4→7F4)及621nm(5D4→7F3)的五组线状峰构成,对应Tb3+的特征跃迁,其中544nm处的最强,样品呈现绿色发光。激发光谱由4f75d1宽带吸收(200~280nm)和4f–4f电子跃迁吸收(330~390nm)组成,其中以380nm处的激发峰最强,可被紫外发光二极管(ultraviolet-light-emittingdiode,UV-LED)有效激发。研究Tb3+掺量(摩尔分数,下同)对发光亮度的影响,结果显示:当Tb3+掺量为9%时,荧光粉的亮度最高,之后出现浓度淬灭现象。Na+、K+和Cl–作为电荷补偿剂均能提高发光亮度,以Cl–作为电荷补偿剂的效果最好。Ce3+对Tb3+具有明显的敏化作用。结果表明:LiBaPO4:Tb3+是一种适用于白光发光二极管用的绿色荧光材料。  相似文献   

9.
以H3BO3作助熔剂,采用溶胶–凝胶法合成了Na2Zn Si O4:Eu3+红色荧光粉。用X射线衍射、荧光光谱分析对样品的结构及发光特性进行了表征,探讨了H3BO3助熔剂添加量和掺Eu3+量对Na2Zn Si O4:Eu3+发光性能的影响。结果表明:所得样品属于单斜晶系,样品的激发光谱主要由一系列线状谱峰组成,激发主峰为465 nm,归属于Eu3+的7F0→5D2特征跃迁。在波长为465 nm蓝光激发下发射红光,发射峰分别为578、591、613、653和701 nm,对应于Eu3+的5D0→7FJ(J=0,1,2,3,4)跃迁,发射主峰位于613 nm(5D0→7F2)处。当Eu3+和H3BO3的摩尔掺杂量分别为5%和0.8%时,样品的荧光发光强度最大。Na2Zn Si O4:Eu3+有望成为蓝光激发的白光发光二极管(w-LED)用红色荧光粉。  相似文献   

10.
水热法合成CaCO_3:Eu~(3+)红色荧光粉(英文)   总被引:2,自引:0,他引:2  
采用低温水热法在150℃不同时间反应下合成了一系列红色荧光粉CaCO3:1%(inmole)Eu3+。利用扫描电子显微镜、X射线衍射和荧光光谱仪等分别对样品的形貌、结构和发光性能进行了表征。结果表明:样品具有立方体的方解石型和针状的文石型结构,其文石型与方解石型的摩尔比随着反应时间的延长而增加。当反应时间达到24h时,样品的发光强度最高,此时样品为针状的无团聚的文石型结构。Eu3+作为发光中心进入到不同晶型的CaCO3晶格中并占据非中心对称格位。样品的277nm附近的最强激发峰是由Eu3+-O2-电荷迁移跃迁引起的,属于宽带激发;另外,在300~550nm处存在窄的激发峰,归属于Eu3+的4f-4f激发跃迁。样品的最大发射峰值均位于614nm附近,属于红色发光,对应于Eu3+的电偶极跃迁5D0→7F2。  相似文献   

11.
Eu3+,Ce3+共掺硼硅酸锌玻璃的发光性能及能量传递   总被引:1,自引:0,他引:1  
柳召刚  闫淑君  王觅堂  李梅 《硅酸盐通报》2012,31(3):559-562,580
采用高温液相法制备了50ZnO-30SiO2-20B2O3∶Eu3+,Ce3+玻璃。测试了样品的激发光谱和发射光谱。结果表明:在紫外光激发下,该玻璃可以发出明亮的红色光。其中580 nm,593 nm,617 nm,655 nm和706 nm波长处的发射峰分别对应于Eu3+的5D0→7F0,5D0→7F1,5D0→7F2,5D0→7F3和5D0→7F4跃迁发射,其中5D0→7F2跃迁发射强度最大,同时发现在450 nm处存在Ce3+的5D→2FJ(J=7/2,5/2)特征发射峰。首次发现在该发光玻璃50ZnO-30SiO2-20B2O3∶Eu3+,Ce3+中存在着Ce3+→Eu3+能量传递现象,其中Ce3+起敏化作用。  相似文献   

12.
用于白光LED的Sr_3SiO_5:Eu~(3+)材料制备及发光特性(英文)   总被引:2,自引:1,他引:1  
采用高温固相法制备了Sr3SiO5:Eu3+材料.测量了Sr3SiO5:Eu3+材料的激发与发射光谱:材料的发射光谱由576、585、611、618nm和650nm几个发射峰组成,分别对应于Eu3+的5D0→7F0、5D0→7F1、5D0→7F2、5D0→7F2和5D0→7F3辐射跃迁.监测618 nm主发射峰时所得激发光谱为一多峰宽谱,主峰分别为400nul和470nm.研究了Eu"浓度对Sr3Si05:Eu3'材料发光强度的影响,结果显示:随Etl3'浓度的增大,发光强度先增大后减小,Eu3+的摩尔分数为3%时,材料的发光强度最大,根据Dexter理论,其浓度猝灭机理为电偶极一偶极跃迁.引入电荷补偿剂Cl-、Li+、Na+和K+时,材料的发光强度均得到了提高,其中Cl-和Li+的提高幅度较明显.  相似文献   

13.
利用溶胶凝胶法制备了Eu3+掺杂的Y2O3荧光粉。考察了Y2O3:Eu3+的制备条件,进行了物相表征,研究了Y2O3:Eu3+的荧光性能。结果表明,在612 nm波长监测下,Y1.98O3:Eu3+0.02的激发光谱为300~550 nm,最大激发峰值位于466 nm,归属于Eu3+的7F0→5D2的跃迁。在466 nm波长激发下,Y2O3:Eu3+的发射光谱为550~700 nm,最大发射峰值位于612 nm,归属于Eu3+的5D0→7F2的跃迁主峰。Eu3+的掺杂量为x=0.02,p H=1时Y2O3:Eu3+荧光粉可以得到最强的红光荧光粉。  相似文献   

14.
李艳红  张星傲  马晶 《硅酸盐学报》2014,42(10):1293-1298
采用聚乙烯吡咯烷酮(PVP)辅助水热法合成了GdF3∶Eu3+和NaGdF4∶Eu3+发光粉。利用X射线衍射(XRD)、扫描电子显微镜和荧光光谱对样品的结构、形貌和发光性能进行了研究。XRD分析表明:GdF3晶相到NaGdF4晶相的转换可以通过改变初始溶液pH值、PVP加入量和NaF与稀土离子(Gd3+和Eu3+)摩尔配比等合成条件实现。NaGdF4∶Eu3+发光粉的形貌受合成条件的影响。荧光光谱研究表明:GdF3∶Eu3+发光粉主发射峰位于593nm处,来自于Eu3+的5 D0→7 F1磁偶极跃迁;NaGdF4∶Eu3+发光粉主发射峰位于616nm,来自于Eu3+的5 D0→7 F2电偶极跃迁。2个样品中Gd3+与Eu3+离子之间存在较好的能量传递,而NaGdF4晶格更有利于2种离子的能量传递。  相似文献   

15.
BaMoO_4:Eu~(3+)红色荧光粉的制备及发光性质   总被引:2,自引:0,他引:2  
采用柠檬酸溶胶-凝胶法制备了BaMoO4:Eu3+红色荧光粉,差热(DSC) 和X射线衍射(XRD)研究结果表明,经过700 ℃高温烧结后可得到BaMoO4纯物相.粒度分析结果表明,经700 ℃烧结后样品的粒径约为 200 nm,随着烧结温度的升高,产物的粒径明显增大,当烧结温度为800 ℃时,样品的粒径约为 500 nm.分别以392 nm 的近紫外光和 462 nm 的可见光激发样品,BaMoO4:Eu3+荧光粉发红光,对应于Eu3+的4f-4f跃迁,其中以615 nm附近的5D0→7F2电偶极跃迁发光最强,当Eu3+的掺杂浓度约为25 mol %时,在616 nm处的发光强度最大.荧光粉在392 nm和462 nm的吸收分别与紫外光和蓝光LED芯片相匹配.因此,BaMoO4:Eu3+荧光粉是一种可能应用在白光LED上的红色荧光材料.  相似文献   

16.
王飞  陈慧慧 《硅酸盐通报》2016,35(12):3998-4004
采用高温固相法制备了红色荧光粉Ca0.97Al2Si2O8∶ Eu0.033+,Li0.03+,研究了预压压力对其的晶体结构和发光性质的影响.XRD图谱显示,合成的试样均为纯相的CaAl2Si2O8晶体,三斜晶系,空间群为P-1.随着预压压力的增大时,各试样衍射图谱的各衍射峰的强度均有一定程度的增强,其中衍射最强峰(004)强度呈线性递增,斜率为15.9286,试样的晶胞参数a,b,c逐渐减小.在614 nm波长的监控下,收集到位于220~ 580 nm范围的激发光谱,该激发光谱由220~340 nm宽激发带和一组锐线峰构成,激发光谱中的最强峰为394 nm(7 F0→5 L6),其次为462 nm(7F0→5 D2);预压压力改变对7 F0→5L6影响较大.用394 nm激发Eu3+ (5L6)得到发射光谱,光谱中的锐线峰580am,594 nm,614 nm,655 nm,和705 nm归属于Eu3+的5D0→7FJ(J =0,1,2,3,4)的跃迁;预压压力在0~4 MPa范围内,预压压力对CaAl2Si2O8基质中的Eu3+的电偶极跃迁5D0→7F2影响较大.预压压力4 MPa试样激发和发射光谱强度相比于预压压力0 MPa试样分别增强52.52%,65.80%.荧光粉Ca0.97Al2Si2O8∶Eu0.033+,Li0.03+的色坐标a和色温均随着预压压力的增加而逐渐增加,分别增加0.0089,778 K,各试样的色坐标在(0.624,0.374)左右,色温约为4000K.  相似文献   

17.
采用液相沉淀法制备了近紫外光激发的颜色可调Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉,利用XRD、SEM、荧光光谱以及色坐标分析研究了所制备荧光粉的结构、形貌和发光性能。XRD分析表明,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)、Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)和Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)荧光粉样品属单斜晶系。荧光光谱分析表明,Sr_2SiO_4:Gd~(3+),Tb~(3+),Eu~(3+)的激发光谱包括200~300nm的宽带吸收峰和Tb~(3+)、Eu~(3+)的系列吸收峰。在243nm、354nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Tb~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F6(490nm,蓝绿光)、~5D_4→~7F_5(548nm,绿光)和~5D_4→~7F4(588nm,黄光)跃迁发射峰组成。在243nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.06Eu~(3+)的发射光谱由Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。在243nm、252nm、364nm紫外光激发下,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)的发射光谱由Tb~(3+)的~5D_4→~7F_6(490nm,蓝绿光)、~5D_4→~7F_5 (548nm,绿光)、~5D_4→~7F_4(588nm,黄光)和Eu~(3+)的~5D_0→~7F_1(591nm,橙光)、~5D_0→~7F_2(614nm,红光)、~5D_0→~7F_3(652nm,红光)跃迁发射峰组成。色坐标分析表明,Sr_2SiO_4:0.06Gd~(3+),0.03Tb~(3+),0.03Eu~(3+)是很好的近紫外光激发的三色发光荧光粉。  相似文献   

18.
以NH3·H2O-NH4HCO3混合溶液为复合沉淀剂,制备了LaAlO3∶Eu3+纳米晶体.通过X射线衍射、扫描电镜和透射电镜对产物进行了表征,用荧光光度计测试了样品的三维荧光光谱、激发光谱和发射光谱.结果表明:前驱沉淀物经800℃焙烧处理2h,制备出球型形貌,颗粒分散性好、尺寸约为40nm的立方相LaAlO3纳米晶.由三维荧光光谱确定了LaAlO3∶Eu3+的最佳监测波长和激发波长,在395nm波长光的激发下观察到纳米LaAlO3中Eu3+的591nm(5D0-7F1)和613nm(5D0-7F2)特征发射谱,磁偶极跃迁5D0-7F1的发射峰强度要比电偶极跃迁5D0-7F2更强,而且这种趋势随着焙烧温度的升高明显增强,说明由该法制备的纳米LaAlO3中Eu3+离子占据的位置具有高的对称性.  相似文献   

19.
采用固相法制备了LiBaBO3:Eu3+材料,并研究它的发光特性。LiBaBO3:Eu3+材料的主发射峰位于594、613、651nm和686nm,分别对应Eu3+的5D0→7F1、5D0→7F2、5D0→7F3和5D0→7F4跃迁;监测613nm发射峰,对应的激发光谱主峰为260、329、368、400nm和470nm。研究了Eu3+含量对LiBaBO3:Eu3+材料发射强度的影响,结果表明:随Eu3+含量的增大,发射强度先增大后减小,Eu3+摩尔分数为3%时,发射强度最大,依据Dexter理论知浓度猝灭机理为偶极-偶极相互作用。掺入电荷补偿剂Li+、Na+和K+均提高了LiBaBO3:Eu3+材料的发射强度。  相似文献   

20.
CaSiO3:Eu的发光性质   总被引:3,自引:2,他引:3  
采用高温固相反应法合成出CaSiO3:Eu^3 荧光体。研究了其荧光性质。样品的晶体结构为α-CaSiO3和β-CaSiO3的混合相,其激发光谱的峰位位于240,320,362,383,394,415nm,分别对应于O→Eu的电荷迁移带和^7F0.1-^5H3,^5D4,^5GJ,^5L6,^5D3的吸收跃迁。在240nm和394nm激发下,Eu^3 离子的^5D0→^7F2电偶极跃迁最强,表明Eu^3 离子占据更多的非反演中心格位。研究了不同电荷补偿剂对发光性能的影响,以Li^ 离子的电荷补偿效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号