首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conventional solid-state reaction has been used to synthesize the perovskite Ca(1 − x)SrxTi(1 − y)ZryO3 (y = 0.1). The aim of this study is focused on the development of new materials with complex perovskite structure and on their dielectric property improvement. The temperature and substitutional ratio effects on the different phase evolutions is investigated by X-ray diffraction (XRD) and scanning electron microscope observations. These ceramics sintered at 1500 °C, present a density higher than 95% and their dielectric properties are significantly affected by the substitution. The CaTiO3 ceramic present a relative permittivity of 190 and the temperature coefficient of the permittivity of − 1828 ppm/C°. The substitution with zirconium (for x = 0 and y = 0.1: Σ = 145; |Σ = − 917 ppm/C°). Both permittivity and temperature coefficient values decrease; however, an opposite effect is observed when substituting with the strontium. With increasing an x value and maintaining a y value constant (y = 0.1), the dielectric constant increases and the temperature coefficient remains constant. Therefore, the dielectric properties of CaTiO3 ceramics are improved with the combined substitution.  相似文献   

2.
This paper investigated the microstructure and dielectric properties of BaTiO3-Pb(Sn, Ti)O3 system ceramics. The Curie point of BaTiO3 is 130 °C. When the temperature is higher than 130 °C, the dielectric constant of BaTiO3 drops severely according to Curie-Weiss law. Pb(Ti, Sn)O3(PTS) was selected to compensate the dielectric constant doping of BaTiO3 since it has high Curie temperature (Tc) point that is about 296 °C. The Curie temperature (Tc) point of BaTiO3 was broadened and shifted to higher temperature because of the doping of PTS, so the temperature coefficient of capacitance (TCC) curves of the ceramics based on BaTiO3 was flattened. When 2 wt% Pb(Ti0.55Sn0.45)O3 was added, the sample showed super dielectric properties that the dielectric constant was >1750 at 25 °C, dielectric loss was lower than 2.0% and TCC was <±10% from −55 °C to 200 °C. Therefore the materials satisfied EIA X9R specifications.  相似文献   

3.
Nanocrystalline Gd2O3:Eu scintillators were successfully synthesized using a hydrothermal method and subsequent calcination treatment in the electrical furnace as an X-ray to visible light conversion material for an indirect X-ray image sensor. In this work, various Gd2O3:Eu scintillators were prepared in accordance with different synthesis conditions such as doped-Eu concentration, different calcination temperatures of 600-1400 °C and calcination time of 1-10 h. The transition of morphology from nanorods to particles was observed as the calcination temperature of Gd2O3:Eu scintillator increased. And the phase transformation of the sample from cubic to monoclinic structure was discovered at 1300 °C calcination temperature. In addition, scintillation properties such as luminescent spectra and light intensity under 266 nm UV illumination were measured as a function of calcination condition of as-synthesized Gd2O3:Eu powder. The nanocrystalline Gd2O3:Eu scintillator with a strong red light emission at near 611 nm wavelength under photo- and X-ray excitation will be employed for its potential X-ray image sensor applications in the future.  相似文献   

4.
0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3(PNN-PZT) ceramics with different concentration of xFe2O3 doping (where x = 0.0, 0.8, 1.2, 1.6 mol%) were synthesized by the conventional solid state sintering technique. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase. The density and grain size of Fe-doped ceramics tend to increase slightly with increasing concentration of Fe2O3. Comparing with the undoped ceramics, the piezoelectric, ferroelectric and dielectric properties of the Fe-doped PNN-PZT specimens are significantly improved. Properties of the piezoelectric constant as high as d33 ~ 956 pC/N, the electromechanical coupling factor kp ~ 0.74, and the dielectric constant εr ~ 6095 are achieved for the specimen with 1.2 mol% Fe2O3 doping sintered at 1200 °C for 2 h.  相似文献   

5.
The microwave dielectric properties and microstructures of CuO-doped Nd(Zn1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route were investigated. The prepared Nd(Zn1/2Ti1/2)O3 exhibits a mixture of Zn and Ti showing 1:1 order in the B-site. As an appropriate sintering aid, not only did CuO lower the sintering temperature, it could effectively hold back the evaporation of Zn in the Nd(Zn1/2Ti1/2)O3. Moreover, CuO only resided in boundaries, which was confirmed by EDX analysis. The measured lattice parameters of CuO-doped Nd(Zn1/2Ti1/2)O3 (a = 5.4652 ± 0.0005 ?, b = 5.6399 ± 0.0007 ?, c = 7.7797 ± 0.0008 ? and β = 90.01 ± 0.01°) retained identical to that of the pure Nd(Zn1/2Ti1/2)O3 in all cases. In comparison with the pure Nd(Zn1/2Ti1/2)O3 ceramics, specimen with 1 wt.% CuO addition possesses a compatible combination of dielectric properties with a εr of 30.68, a Q × f of 158,000 GHz (at 8 GHz) and a τf of − 45 ppm/°C at 1270 °C. It also indicated a 60 °C lowering in the sintering temperature. The proposed dielectrics can be a very promising candidate material for microwave or millimeter wave applications requiring extremely low dielectric loss.  相似文献   

6.
BaTiO3-SrTiO3 (BST) thick films (~ 250-390 μm) with layered structures were fabricated by tape-casting and lamination process. Layered composites with various Ba/Sr ratios were obtained by lamination of BaTiO3 (BT) and SrTiO3 (ST) tapes in different spatial configurations (2-2). As-prepared BST ceramics showed much improved sinterability over the laminates of pure BT or pure ST tapes. Dielectric properties of materials were measured in the temperature range of 25 °C to 200 °C. The method of utilizing of layered structures offered flexibility to maximize the energy storage capability at specific operating conditions: (temperature and electric field) by tailoring the dielectric properties through varying the spatial configurations of BT and ST films.  相似文献   

7.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

8.
Dan Liu  Yongping PuXuan Shi 《Vacuum》2012,86(10):1568-1571
A microwave ceramic with general composition (1-x-y) BaTiO3 + x Cr2Ti3O9 + y Bi2O3 has been prepared by solid state synthesis at 1300-1400 °C. The phase composition, perovskite structural parameters and dielectric properties have been obtained by X-ray diffraction and dielectric measurements as a function of chemical composition and temperature. At low doping levels the formation of BaTiO3-based solid solution has been found. The precipitation of BaCrO3 has been detected at x = y = 2.0 mol%. A model of the incorporation of Cr3+ and Bi3+ ions into BaTiO3-based crystal lattice has been proposed. Diffused phase transition in the temperature range 100-140 °C have been revealed by dielectric measurements for different ceramic composition. As high dielectric constant as 7311 and as low dielectric loss as 0.02 have been found for the composition of 0.98BaTiO3-0.01Cr2Ti3O9-0.01Bi2O3.  相似文献   

9.
Li2TiO3 ceramics were prepared at the sintering temperatures from 1050 to 1250 °C. The optimal microwave dielectric properties were ?r = 23.29, Q × f = 15,525 GHz (5.9 GHz), and τf = 35.05 ppm/ °C for the sample sintered at 1200 °C. The microwave dielectric properties were improved obviously when the Li2TiO3 ceramics were sintered at low temperatures with small additions of H3BO3 (B2O3 in the form of H3BO3). Only monoclinic Li2TiO3 was found in the pure or H3BO3-doped Li2TiO3 ceramics. About 1.0 wt.% H3BO3 addition aided the sintering of Li2TiO3 ceramics effectively while excessive H3BO3 (≥2.5 wt.%) was not favorable. Typically the best microwave dielectric properties were ?r = 23.28, Q × f = 37,110 GHz (6.3 GHz), and τf = 30.43 ppm/ °C for the 1.0 wt.% H3BO3-doped Li2TiO3 ceramic sintered at 920 for 3 h, which is promising for LTCC applications.  相似文献   

10.
BaCu(B2O5) (BCB) was used as sintering aids to lower the sintering temperature of multi-ions doped SrTiO3 ceramics effectively from 1300 °C to 1075 °C by conventional solid state method. The effect of BCB content on crystalline structures, microstructures and properties of the ceramics was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and dielectric measurements, respectively. The addition of BCB enhanced the breakdown strength (BDS) while did not sacrifice the dielectric constant. The enhancement of BDS should be due to the modification of microstructures, i.e., smaller and more homogeneous grain sizes after BCB addition. The dielectric constant of BCB-doped ceramics maintained a stable value with 1.0 mol% BCB, which was dominated by the combination of two opposite effects caused by the presence of second phases and the incorporation of Cu2+ and Ba2+, while further increase was owing to the increase of dissolved Ba2+ ions when the content of BCB is more than 2.0 mol%. The multi-ions doped SrTiO3 ceramics with 1.0 mol% BCB addition showed optimal dielectric properties as follows: dielectric constant of 311.37, average breakdown strength of 28.78 kV/mm, discharged energy density of 1.05 J/cm3 and energy efficiency of 98.83%.  相似文献   

11.
The novel nano-ultrafine powders for the preparation of CaCu3Ti4O12 ceramic were prepared by the sol-gel method and citrate auto-ignition method. The obtained precursor powders were pressed, sintered at 1000 °C to fabricate microcrystal CaCu3Ti4O12 ceramic. The microcrystalline phase of CaCu3Ti4O12 was confirmed by X-ray powder diffraction (XRD). The morphology and size of the grains of the powders and ceramics under different heat treatments were observed using scanning electron microscopy (SEM). The relative dielectric constant of the ceramic sintered at 1000 °C was measured with a magnitude of more than 104 at room temperature, which was approaching to those of Pb-containing complex perovskite ceramics, and the loss tangent was less than 0.20 in a broad frequency region. The relative dielectric constant and loss tangent were also compared with that of CaCu3Ti4O12 ceramic prepared by other reported methods.  相似文献   

12.
Sm2Zr2O7 co-doped with and without 5 mol.% Yb2O3 and 5 mol.% Gd2O3 were prepared by a pressureless-sintering method at 1973 K for 10 h in air. The relative density, structure and electrical conductivity were investigated by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance spectra measurements. Both Sm2Zr2O7 and (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramics exhibit a single phase of pyrochlore-type structure. The grain conductivity, grain-boundary conductivity and total conductivity obey the Arrhenius relation, respectively, and gradually increase with increasing temperature from 723 to 1173 K. (Sm0.9Gd0.05Yb0.05)2Zr2O7 ceramic is the oxide-ion conductor in an oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The grain conductivity, grain-boundary conductivity and total conductivity of (Sm0.9Gd0.05Yb0.05)2Zr2O7 with dual Yb3+ + Gd3+ doping are higher than those of undoped Sm2Zr2O7 at identical temperature levels.  相似文献   

13.
The microwave dielectric properties and the microstructures of MgNb2O6 ceramics with CuO additions (1-4 wt.%) prepared with conventional solid-state route have been investigated. The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. It is found that MgNb2O6 ceramics can be sintered at 1140 °C due to the liquid phase effect of CuO addition. At 1170 °C, MgNb2O6 ceramics with 2 wt.% CuO addition possesses a dielectric constant (εr) of 19.9, a Q×f value of 110,000 (at 10 GHz) and a temperature coefficient of resonant frequency (τf) of −44 ppm/°C. The CuO-doped MgNb2O6 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

14.
La2O3 (0–0.8 wt.%)-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (abbreviated as BNBT6) lead-free piezoelectric ceramics were synthesized by conventional solid-state reaction. The influences of La2O3 on the microstructure, the dielectric, ferroelectric and piezoelectric properties of the composites were investigated. X-ray diffraction (XRD) patterns indicate that 0.2-0.8 wt.% of La2O3 has diffused into the lattice of BNBT6 ceramics. Consequently, a pure perovskite phase is formed. SEM images show that the microstructure of the ceramics is changed with the addition of a small amount of La2O3. The temperature dependence of the relative dielectric constant shows that Curie point decreases with the increase of La2O3. At room temperature, the ceramics doped with 0.6 wt.% La2O3 show superior performance with high piezoelectric constant (d33 = 167 pC/N), high planar electromechanical coupling factor (kp = 0.30), high mechanical quality factor (Qm = 118), high relative dielectric constant (εr = 1470) and lower dissipation factor (tanδ = 0.056) at a frequency of 10 kHz.  相似文献   

15.
Al2O3-ZrO2 composite films were fabricated on Si by ultrahigh vacuum electron-beam coevaporation. The crystallization temperature, surface morphology, structural characteristics and electrical properties of the annealed films are investigated. Our results indicate that the amorphous and mixed structure is maintained up to an annealing temperature of 900 °C, which is much higher than that of pure ZrO2 film, and the interfacial oxide layer thickness does not increase after annealing at 900 °C. However, a portion of the Al2O3-ZrO2 film becomes polycrystalline after 1000 °C annealing and interfacial broadening is observed. Possible explanations are given to explain our observations. A dielectric constant of 20.1 is calculated from the 900 °C-annealed ZrO2-Al2O3 film based on high-frequency capacitance-voltage measurements. This dielectric characteristic shows an equivalent oxide thickness (EOT) as low as 1.94 nm. An extremely low leakage current density of ∼2×10−7 A/cm2 at a gate voltage of 1 V and low interface state density are also observed in the dielectric film.  相似文献   

16.
The microwave dielectric properties of La(Mg0.5−xCoxSn0.5)O3 ceramics were examined with a view to exploiting them for mobile communication. The La(Mg0.5−xCoxSn0.5)O3 ceramics were prepared using the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Co0.1Sn0.5)O3 ceramics revealed that La(Mg0.4Co0.1Sn0.5)O3 is the main crystalline phase, which is accompanied by small extent of La2Sn2O7 as the second phase. Formation of this Sn-rich second phase was attributed to the loss of MgO upon ignition. Increasing the sintering temperatures seemed to promote the formation of La2Sn2O7. An apparent density of 6.67 g cm−3, a dielectric constant (?r) of 20.3, a quality factor (Q.F.) of 70,500 GHz, and a temperature coefficient of resonant frequency (τf) of −77 ppm °C−1 were obtained for La(Mg0.4Co0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

17.
Li0.30Cr0.02Ni0.68O giant dielectric ceramics doped with Al2O3 were prepared by solid-state reaction via sol-gel process. The sintered samples were characterized using X-ray powder diffraction and scanning electron microscopy, and dielectric properties were also investigated. All doped samples showed the single phase of cubic rock-salt structure NiO. With increasing Al2O3 content, the crystallite size and grain size decreased, possibly due to an occurrence of the secondary phases at grain boundaries which inhibit the grain growth. The sample with 0.2 wt.% Al2O3 showed nearly 7 times lower tanδ (2.37) and higher εr (7.25 × 106) measured at 1 kHz and room temperature when compared to the pure sample.  相似文献   

18.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

19.
Nanoporous barium titanate with high specific surface area was prepared from co-gel precursors through solvothermal method followed by supercritical drying. The samples were accumulated by BaTiO3 nanoparticles with excellent crystallinity. The BaTiO3 obtained at 60 °C exhibited a high BET surface area of 117 m2/g. The porosity reduced with the increasing solvothermal temperature. Raman spectra indicated that the solvothermal-synthesized BaTiO3 was composed by both cubic phase and tetragonal phase. The relations between dielectric properties and the porosity of the samples were also investigated. The introduction of pores reduced the dielectric constant obviously. The dielectric constant of the obtained sample increased with the decrease of the porosity.  相似文献   

20.
The degradation of epitaxial thin films of YBa2Cu3O7 has been studied as a function of annealing temperature in air and in vacuum; some samples had an evaporated overlayer of CaF2. Degradation was monitored by the measurement of electrical properties after consecutive 30-min annealing treatments. The room-temperature resistance registered significant increases for all samples after annealing at temperatures above about 200°C; the critical current density at 77 K was degraded for annealing temperatures 400°C in air, and 200–250°C in vacuum. By annealing in oxygen at 550°C, electrical properties were restored in degraded bare YBCO samples annealed in vacuum, but not for those annealed in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号