首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
New Pb-based superconducting cuprate with the 1201 structure has been synthesized in the (Pb1 − yBy)(Sr2 − xLax)CuOz system. From X-ray powder diffraction study, the almost-single 1201 phase sample is found to be obtained at x = 1.0 and y = 0.5 for the nominal composition of (Pb1 − yBy)(Sr2 − xLax)CuOz. The crystal structure has a tetragonal symmetry with the lattice parameters of a = 0.3779 nm and c = 0.8654 nm. The sample shows an onset of superconductivity at about 32 K as measured by the temperature dependence of the DC magnetic susceptibility.  相似文献   

2.
A. Biju 《Materials Letters》2007,61(3):648-654
The structural, electrical and superconducting properties of Bi1.7Pb0.4Sr2 − xYbxCa1.1Cu2.1Oy system has been studied for different Yb concentrations. The samples are prepared by solid state synthesis in the polycrystalline bulk form. Structural analysis by X-ray diffraction, microstructural examination by SEM and measurements of electrical and superconducting properties have been conducted to study the effects of Yb substitution at Sr site. The critical temperature (TC) and critical current density (JC) are found to increase drastically with Yb substitution. Maximum values of TC and JC are observed for x = 0.3 and x = 0.2 respectively. The increase in TC and JC is explained due to the substitution effect of Yb3+ in place of Sr2+ and consequent change in the hole concentration in the CuO2 planes. Above the optimum levels TC and JC begin to reduce due to secondary phase formation. A metal-insulator transition originating from the change of carrier concentration is found to occur at higher doping level (x > 0.5).  相似文献   

3.
The Bi5−xLaxTi3Co0.5Fe0.5O15 (0 ≤ x ≤ 0.4) ceramics were successfully synthesized by a modified Pechini process. The samples were characterized by X-ray diffraction and no impurity phase has been detected. The cell volume of the composites increases monotonously with the increase of La content, which indicates that La ions have been incorporated into the lattice of Bi5Ti3Co0.5Fe0.5O15. The magnetic measurements show that La doping on Bi sites has enhanced the magnetization of Bi5−xLaxTi3Co0.5Fe0.5O15 (0 ≤ x ≤ 0.4). Both the dielectric constants and loss tangent of all the samples decrease on increasing frequency and then become almost constant at room temperature. The La doped Bi5Ti3Co0.5Fe0.5O15 samples exhibit improved dielectric and ferroelectric properties, with higher dielectric constant enhanced remnant polarization and lower losses at room temperature.  相似文献   

4.
The effects of neodymium (Nd) addition on the phase evolution, structural and superconducting properties of (Bi,Pb)2Sr2CaCu2Oy [(Bi,Pb)-2212] prepared by solid state synthesis in bulk polycrystalline form were studied. The Nd content was varied from x = 0 to 0.5 on a general stoichiometry of Bi1.7Pb0.4Sr2.0Ca1.1Cu2.1NdxOy. The samples were characterized by differential thermal analysis (DTA), powder X-ray diffraction, scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), resistance-temperature (R-T) measurements and superconductivity measurements at 64 K. It was found that the melting temperature of (Bi,Pb)-2212 slightly increases and the endotherm broadens due to the Nd-addition. The c-lattice parameter initially decreases and then increases with Nd addition. The critical temperature (TC) and the critical current density (JC) of the added samples are highly enhanced. The added sample shows a maximum onset critical temperature (TC-onset) of 95.56 K (x = 0.3) and a maximum critical current density of 719 A/cm2 at 64 K (x = 0.2) against 76.7 K and 100 A/cm2, respectively, for the pure sample. The results show that the enhancement in superconducting properties are not due to any improvement in microstructure or grain growth, but due to a decrease in hole concentration as a result of Nd doping, which changes the system from ‘over-doped condition’ to ‘optimally doped condition’.  相似文献   

5.
(1 − x) (0.95K0.5Na0.5NbO3-0.05LiSbO3)-xBiScO3 lead-free piezoceramics have been fabricated by an ordinary pressure-less sintering process. The relationship between the BS content, phase structure, density, and piezoelectric properties and their temperature stability was discussed particularly. All compositions show a main perovskite structure, showing room-temperature symmetries of orthorhombic at = 0, of tetragonal at 0.002 ≤ x ≤ 0.01. When 0.002 ≤ x ≤ 0.008, the ceramics have excellent electrical properties of d33 = 265-305 pC/N, kp = 45-54%, ?r = 1346-1638, Curie temperature Tc = 315-370 °C and depolarizing temperature Td = 315-365 °C, comparable to that of other KNN-based piezoceramics. The results indicate that the ceramics are promising lead-free piezoelectric materials.  相似文献   

6.
The solid solution (Ba12xBi2x)(CuxTi1− x)O3 (0.0 < x ≤ 0.10) was prepared by conventional high temperature reaction. In the region of x ≤ 0.040 single phases of tetragonal perovskite-type compounds were obtained and the c-axis increased up to x = 0.015 and the maximum of the a/c ratio was 1.0123 at x = 0.010. In x > 0.040 a small amount of an unknown impurity phase appeared in addition to a tetragonal perovskite-type phase. The Curie temperature Tc increased to 140 °C at x = 0.010. Rising Tc was confirmed by temperature dependence of the dielectric constants and the endothermic peaks observed in DTA curves. This is the first example for rising Tc in the solid solution based on BaTiO3 except for doping of Pb2+ ion.  相似文献   

7.
N-type Mg2Si0.58Sn0.42 − xBix (0 ≤ x ≤ 0.015) compounds were prepared by melting the element metals in sealed tantalum tubes followed by hot pressing. The XRD results indicate that all samples are composites containing both major magnesium silicide solution phase and minor magnesium stannide solution phase. The Hall measurements show that the carrier concentrations and electrical conductivities increase with the increase of Bi doping amount. It was found that the intrinsic excitation shifts to high temperature due to Bi doping, which leads to the increase of the peak-temperatures of the Seebeck coefficient. The maximum dimensionless figure of merit is 0.65 at 700 K for the sample x = 0.015.  相似文献   

8.
(1 − x)Bi0.5Na0.5TiO3-x(Ba0.7Ca0.3)TiO3 (BNT-xBCT, 0 ≤ x ≤ 0.15) solid solutions have been synthesized by a conventional solid state sintering method for obtaining a morphotropic phase boundary (MPB) with good piezoelectric properties. X-ray diffraction patterns reveal that a MPB of rhombohedral and tetragonal phases is formed at compositions 0.09 ≤ x ≤ 0.12. Addition of BCT into BNT greatly lowered coercive field Ec without degrading remanent polarization Pr. The specimen with x = 0.09 has the good piezoelectric properties: d33 = 125 pC/N and kp = 0.33. A modified Curie-Weiss law was used to fit the dielectric constant of BNT-xBCT ceramics, and a frequency dispersion was observed during the phase transitions from antiferroelectric to paraelectric in specimens with x exceeding 0.06.  相似文献   

9.
Sn doping in an n-type transparent conducting oxide MgIn2O4 is carried out and its effect on the high temperature transport properties viz. thermopower and electrical resistivity is studied. A solid solution exists in the composition window Mg1+xIn2−2xSnxO4 for 0 < x ≤ 0.4. The band gap as well as the transport properties increases with increasing Sn concentration. The high temperature resistivity properties indicate degenerate semiconducting behavior for all the compositions. The highest figure of merit obtained is 0.12 × 10−4 K−1 for the parent compound at 600 K.  相似文献   

10.
(1−x)(0.948 K0.5Na0.5NbO3-0.052LiSbO3)-xBiAlO3 (KNNLS-xBA) lead-free piezoceramics were synthesized by conventional solid state reaction method. The compositional dependence of phase structure and electrical properties of the ceramics was systemically studied. XRD patterns revealed that all the ceramic samples possessed pure perovskite structure. In addition, polymorphic phase transition (PPT) for the ceramics with BA doping could not be observed in the measuring range from room temperature to 500 °C. Within the studied range of BA addition, the ceramics with x = 0.002 represented a relatively desirable balance between the degradation of the piezoelectric properties, improvement in temperature stability and mechanical quality factor. It was found that the KNNLS-0.002BA ceramics exhibited optimum overall properties (d33 = 233 pC/N, kp = 35%, tanδ = 0.047, Pr = 27.3 μC/cm2, Qm = 56 and Tc = 349 °C), suggesting that this material should be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

11.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

12.
Pure and yttrium substituted CaCu3Ti4 − xYxO12 − x / 2 (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 °C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu3Ti4 − xYxO12 − x / 2 (x = 0.02) film at 1 KHz were k ∼ 2700 and tan δ ∼ 0.07.  相似文献   

13.
Fluorine-doped 5 V cathode materials LiNi0.5Mn1.5O4−xFx (0.05 ≤ x ≤ 0.2) have been prepared by sol-gel and post-annealing treatment method. The results from X-ray diffraction and scanning electron microscopy (SEM) indicate that the spinel structure changes little after fluorine doping, but the particle size varies with fluorine doping and the preparation conditions. The electrochemical measurements show that stable cycling performance can be obtained when the fluorine amount x is higher than 0.1, but the specific capacity is decreased and 4 V plateau capacity resulting from a conversion of Mn4+/Mn3+ remains. Moreover, influence of the particle size on the reversible capacity of the electrode, especially on the kinetic property, has been examined.  相似文献   

14.
A series of multiferroic (1−x)BiFeO3x(Bi0.5Na0.5)TiO3 (BF-BNT) (x = 0 − 0.6) solid solution ceramics were prepared by a sol-gel method. The XRD results show that increasing BNT content induce a gradual phase transformation from rhombohedral to pseudocubic structure near x = 0.4. Compared with pure BiFeO3, superior multiferroic properties are obtained for x = 0.3 with remnant polarization Pr = 1.49 μC/cm2 and saturated magnetization Ms = 0.51 emu/g. Importantly, the paramagnetic (PM) to ferromagnetic (FM) transition is observed for the solutions, and the Curie temperature (TC) can be tuned by varying the content of BNT. This observed FM ordering is discussed in terms of the possible existence of the long-range superexchange interaction of Fe3+-O-Ti-O-Fe3+ in the chemically ordered regions.  相似文献   

15.
La modified Pb(Mg1/2W1/2)O3 were prepared by solid-state reaction process, and the sintering behavior, microstructure and microwave dielectric properties were investigated by X-ray powder diffraction (XRD), Raman scattering and HP network analyzer in this paper. A series of single phase perovskite type solid solutions with A-site vacancies (Pb1−3x/2Lax(Mg1/2W1/2)O3 (0 ≤ x ≤ 2/3)) were formed. The solid solution took cubic perovskite type structure (Fm3m) with random distribution of A-site vacancies when 0 < x < 0.5, and tetragonal or orthorhombic structure with the ordering of A-site vacancies when 0.5 ≤ x ≤ 2/3. The dielectric constant and temperature coefficient of resonant frequency decrease with increasing La content. Relatively good combination microwave dielectric properties were obtained for x = 0.56: ?r = 28.7; Q × f = 18098; and τf = −5.8 ppm/°C.  相似文献   

16.
Lead-free ceramics (1 − x)(K0.5Na0.5)0.95Li0.05Sb0.05Nb0.95O3-xSmAlO3 (KNLNS-xSA) were prepared by conventional sintering technique. The phase structure, dielectric and piezoelectric properties of the ceramics were investigated. All compositions show a main perovskite structure, exhibiting room-temperature symmetries of tetragonal at x ≤ 0.0075, of pseudo-cubic at x = 0.0100. The Curie temperature of KNLNS-xSA ceramics decreases with increasing SmAlO3 content. Moreover, the addition of SmAlO3 can effectively broaden the sintering temperature range of the ceramics. The KNLNS-xSA ceramic with x = 0.0050 has an excellent electrical behavior of piezoelectric coefficient d33 = 226 pC/N, planar mode electromechanical coupling coefficient kp = 38%, dielectric loss tan δ = 3.0%, mechanical quality factor Qm = 60, and Curie temperature TC = 327 °C, suggesting that this material could be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

17.
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.  相似文献   

18.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

19.
The polycrystalline samples of Fe3−xMnxO4 (0.10 ≤ x ≤ 0.50) were prepared by a solid-state route reaction method. X-ray diffraction pattern shows that Mn2+ doped magnetites are in single phase and possess cubic inverse spinel structure. The resistivity measurements (10 < T < 300 K) for x = 0.0 and 0.01 confirms the first order phase transition at the Verwey transition TV = 123 K and 117 K, respectively. No first order phase transition was evidenced for Fe3−xMnxO4 (0.10 ≤ x ≤ 0.50). Small polaron model has been used to fit the semiconducting resistivity behavior and the activation energy ?a, for samples x = 0.10 and 0.50 is about 72.41 meV and 77.39 meV, respectively. The Raman spectra of Fe3−xMnxO4 at room temperature reveal five phonons modes for Fe3−xMnxO4 (0.01 ≤ x ≤ 0.50) as expected for the magnetite (Fe3O4). Increased Mn2+ doping at Fe site leads to a gradual changes in phonon modes. The Raman active mode for Fe3−xMnxO4 (x = 0.50) at ≅641.5 cm−1 is shifted as compared to parent Fe3O4 at ≅669.7 cm−1, inferring that Mn+2 ions are located mostly on the octahedral sites. The laser power is fixed to 5 mW causes the bands to broaden and to undergo a small shift to lower wave numbers as well as increase in the full width half maxima for A1g phonon mode with the enhancement of Mn2+ doping. Mössbauer spectroscopy probes the site preference of the substitutions and their effect on the hyperfine magnetic fields confirms that Mn+2 ions are located mostly on the octahedral sites of the Fe3−xMnxO4 spinel structure.  相似文献   

20.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号