首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以NaHCO_3为改性剂,改性聚β-羟基丁酸戊酸酯(PHBV)作为反硝化反应器的外加固体碳源和生物膜载体,反硝化去除水中NO_3~--N。研究NaHCO_3对PHBV原料的影响,以及改性后PHBV填料反应器的反硝化效果。结果表明,NaHCO_3能使PHBV产生多孔结构,提升空隙率1.20~2.06倍。改性PHBV具有活性污泥包容量提高、微生物与固体碳源接触面积增加、降低水流冲击、增加生物膜强度等优点。红外光谱分析显示改性PHBV表面官能团与原料PHBV一致,未产生改变。在PHBV与NaHCO_3质量比为10:0.5时,填料各方面表现为佳。适当的改性能够使PHBV原料产生一次性溶解性有机物(DOM),提高微生物繁殖速率,缩短挂膜时间。在小试反应器中,NO_3~--N去除率至少在95%以上,其他参数未有负面变化。  相似文献   

2.
为探究不同类型VFA(乙酸和丙酸)对反硝化同步脱氮除磷的影响,采用厌氧/缺氧富集驯化反硝化同步脱氮除磷微生物(DPAO),利用电子扫描显微镜(SEM)观察富集后微生物特征,并通过批次实验考察2种污泥的厌氧碳吸收、磷释放和缺氧硝酸盐消耗、磷吸收情况。结果表明:以乙酸和丙酸为VFA富集DPAO是可行的;乙酸系统中DPAO以短杆菌为主,而丙酸系统中DPAO以球菌为主,反映了DAPO的多样性特征;乙酸系统中,厌氧碳利用效率0.14 mg/mg(COD)和释磷速率3.5 mg/(g·h)(MLSS)、缺氧氮利用效率0.9 mg/mg(N)和吸磷速率2.3 mg/(g·h)(MLSS),明显高于丙酸系统中的相应参数值0.10 mg/mg(COD),2.7 mg/(g·h)(MLSS),0.7 mg/mg(N),1.7 mg/(g·h)(MLSS);乙酸系统呈现出典型的反硝化同步脱氮除磷特征,而丙酸系统除反硝化同步脱氮除磷外,还存在异氧菌的反硝化脱氮行为。  相似文献   

3.
以处理生活污水为目标,开展了温度、碳源浓度及碳源种类对A2SBR反应器中短程反硝化除磷脱氮效果影响研究。实验结果表明:反应系统最佳温度为24℃,碳源浓度为200 mg/L反硝化除磷效果最佳,TP和NO_2~--N的去除率分别达到93.22%和91.36%,与丙酸钠和葡萄糖相比,乙酸钠作为碳源系统反应效果更明显,释磷速率和COD降解速率为3.38 mg PO_4~(3-)-P/(g MLSS·h)和29.66 mg COD/(g MLSS·h)。  相似文献   

4.
采用室内土壤柱试验装置,研究了以可塑淀粉生物降解材料的废弃物为反硝化碳源去除水中的硝酸盐.结果表明,以PSM为反硝化碳源,能有效去除水中的硝酸盐,最高去除率达到97%.试验结束后,PSM的质量从试验开始的40 g经60 d降到18 g,原有光滑的PSM表面变成粗糙,说明PSM作为碳源被反硝化菌所利用.随着时间的推移,出水的COD与进水的COD相当接近,出水的COD基本稳定在3.4mg·L-1以内,说明PSM的碳释放量具有可控性,不易造成二次污染.  相似文献   

5.
为考察不同的碳源对缺氧反硝化效率的影响,分析污水处理厂沉积池中反硝化过程的反硝化速率。研究结果表明:反硝化反应分3个阶段:第一阶段(0~60 min),运用了可快速迚行生物降解的碳源;第二阶段(60~370 min),已经基本消耗完毕可生物降解的溶解性有机物;第三阶段(370~530 min),NO_3-N的降解速度继续减缓。SCOD与COD的浓度的变化觃律和NO_3-N浓度变化觃律相似。反硝化速率各阶段反应时间变化与NO3-N浓度呈线性关系,因此根据多段动力学方程得到三阶段的反硝化速率。随着时间的不断增加,反硝化速率逐渐减小。  相似文献   

6.
依据污水厂二级出水碳源不足水质特点进行深度脱氮,设计以固态碳源 PHBV、硫磺为填料的协同反硝化生物滤池。研究表明,该协同反硝化生物滤池运行最佳 HRT 为 2 h,当进水硝酸盐质量浓度为 30 mg/L 时,出水硝酸盐最低维持在 2.0 mg/L,去除率达到 93%,脱氮效率及去除率均为最高水平,出水几乎不含有亚硝酸盐、氨氮,表明不会出现亚硝酸盐积累现象,以及并未发生硝酸盐异化还原反应(DNRA)。COD 出水维持在 30 mg/L,证明碳源释放与利用维持平衡,出水无过量有机残留物,不会造成出水的二次污染,出水 SO42-质量浓度为 82 mg/L,且硫自养比例在41%左右,p H维持在7.0~7.4范围内,无需投加外在碱类物质,且维持在中性范围内。  相似文献   

7.
利用剩余污泥和餐厨垃圾发酵液进行反硝化实验,考察其作为外加碳源的可利用性,并验证了发酵液对实际生活污水的脱氮效果。结果表明,相较于产酸总量而言,总挥发性脂肪酸(TVFAs)在发酵液中含量对反硝化效果影响更显著,且TVFAs含量越高,对应的比反硝化速率μ也越高。以pH为7.0、底物的质量浓度120 g/L、有机负荷率8 g/(L·d),污泥停留时间为8 d的实验条件产生的发酵液,TVFAs的质量分数大于85%,以其作为反硝化碳源能够获得较好的反硝化效果,最大比反硝化速率可达14.2 mg/(g·h)。将该发酵液用于生活污水的脱氮处理,当COD/ρ(NO~3~--N)为6时,TN去除率达到85%左右,出水TN的质量浓度低于6 mg/L。  相似文献   

8.
《清洗世界》2021,37(9)
采用高效的生物反硝化技术去除污水中硝酸盐氮,并研究反硝化菌处理硝酸盐氮废水的影响因素及其处理效果曲线。研究表明,DO、微量元素、pH等因素影响微生物的活性,合理调控可以有效提高反硝化反应速率。其次,对反硝化过程中各指标如pH、ORP随硝酸盐氮浓度变化进行了分析。最后对自养反硝化菌进行污泥负荷、污泥沉降性的测定。  相似文献   

9.
孙婷  王继斌  张瑶  吕永涛 《应用化工》2023,(10):2841-2844
接种普通活性污泥,在厌氧/缺氧SBR系统驯化51 d,反硝化脱氮除磷效率分别达到(96±2)%和(88±5)%。在此基础上,取厌氧末活性污泥,研究了COD浓度(0,26.25,87.5 mg/L)对亚硝酸型反硝化除磷性能及N2O释放的影响。结果表明,随着COD浓度的增大,脱氮效率由55.44%升至63.50%和96.44%;同时,COD被合成PHB,并发生释磷的现象,导致除磷效率由33.54%降至26.87%和-0.016%;N2O转化率(N2O-N释放量/去除的TN量)由25.08%减少为22.96%和11.85%。高浓度COD有利于提升反硝化效率,并降低N2O的释放,但会降低除磷效率。  相似文献   

10.
反硝化作为削减内源氮负荷和控制内源氮释放的重要途径,其中硫、铁自养反硝化微生物扮演重要角色,其对于有效解决城市河道黑臭现象具有重要意义。本文首先介绍了硫、铁自养反硝化微生物理论分析,其次简述了影响硫、铁自养反硝化微生物代谢的环境因素,并总结了目前已被鉴定和分离出的硫、铁自养反硝化微生物,最后探讨了城市黑臭河道中硫、铁自养反硝化微生物研究的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号