首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用静电纺丝技术将聚丙烯腈(PAN)纳米纤维收集在皮芯型聚乙烯-聚丙烯(PE-PP)双组分微米纤维网上,制备PAN/PE-PP单层复合纤维网,再将多个单层复合纤维网层层堆叠,经热黏合加固,制备PAN/PE-PP多层复合空气过滤材料,研究了PAN/PE-PP复合纤维网的层数和纺丝时间对其孔径及过滤性能的影响。结果表明:多层复合的方式可得到与单层复合材料相似的孔径参数,但两种材料的孔道结构不同。在总面密度和总纺丝时间一定时,当PAN/PE-PP复合纤维网的层数大于10层时,PAN/PE-PP多层复合过滤材料的过滤效率和品质因子QF均明显大于PAN/PE-PP单层复合过滤材料,阻力略微增大;其中,相较PAN/PE-PP单层复合过滤材料,20层PAN/PE-PP复合过滤材料对≥0.3 μm颗粒的过滤效率提高了33%,阻力增加了5 Pa,QF值提高了30%。当总面密度和层数一定时,延长静电纺丝时间≥210 min,20层PAN/PE-PP复合过滤材料对颗粒的过滤效率可提高至90%以上,但阻力也急剧增大,因此静电纺丝时间为210 min的PAN/PE-PP多层复合材料的过滤性能最佳。因此,与相同面密度的PAN/PE-PP单层复合过滤材料相比,PAN/PE-PP多层复合过滤材料的过滤性能明显提高;微纳米纤维多层复合法是制备高效低阻复合空气过滤材料的有效方法。   相似文献   

2.
采用静电纺丝技术成功制备出聚间苯二甲酰间苯二胺(PMIA)/氧化石墨烯(GO)复合纳米纤维膜(PMIA/GO复合纳米纤维膜)。主要研究了GO的加入对PMIA/GO复合纳米纤维膜的结构、空气过滤性能和热稳定性的影响。实验结果表明,GO成功掺杂于PMIA/GO复合纳米纤维膜中,在GO的添加量为1.0%(wt,质量分数)时,PMIA/GO复合纳米纤维膜的空气过滤效率为97.79%,过滤压降为85.45Pa,玻璃化转变温度为299.8℃,具有较好的空气过滤性能和热稳定性。  相似文献   

3.
基于单喷射静电纺丝法建立掺杂石墨烯粉末的聚丙烯腈(PAN)纳米纤维复合薄膜的制备方法,研究石墨烯粉末的种类、掺杂量等因素对复合薄膜微观结构的影响。结果表明:石墨烯粉末片径越小、片层数量越少、掺杂量越高,越有利于减小纳米纤维的平均直径;通过优化纺丝前驱体溶液的制备工艺,可降低石墨烯片粒径,将石墨烯的掺杂质量分数提升至7%,制备的复合薄膜的纳米纤维直径也会减少,相对于未添加石墨烯的薄膜,减小幅度达到34.0%。该制备方法利于得到纤维直径更小的PAN薄膜,降低薄膜的孔径,提高薄膜的力学性能,提升对超细颗粒物的过滤效果。  相似文献   

4.
采用多喷头静电纺丝技术,将聚氨酯(PU)和聚丙烯腈(PAN)纺丝喷头交叉排列,制备了PU/PAN复合空气过滤膜。通过改变PU/PAN喷头比例来调控复合膜结构,探究了PU/PAN喷头比例对复合膜形貌、过滤性能和力学性能的影响。结果表明:当PU/PAN喷头比例为2∶2时,PU和PAN纳米纤维呈交错排列,复合膜过滤效率高达96.29%,过滤阻力仅为93Pa;断裂强度为纯PAN膜的两倍。  相似文献   

5.
《中国粉体技术》2019,(2):68-74
采用3种改性剂对凹凸棒石进行表面改性,然后通过静电纺丝技术制备凹凸棒石-聚丙烯腈(ATP-PAN)复合纳米纤维膜,研究改性剂对复合膜结构和空气过滤性能的影响,优化ATP-PAN复合膜材料的静电纺丝制备工艺。结果表明,经十八烷基三甲基溴化铵和γ-甲基丙烯酰氧基丙基三甲氧基硅烷联用改性后的凹凸棒石纳米棒在复合纳米纤维膜中的分布较优。以邻苯二甲酸二辛酯(DOP)气溶胶颗粒为目标过滤物,发现凹凸棒石使复合膜的空气过滤效率达到98. 670%,压降仅为106. 7 Pa,品质因数为0. 407 3 Pa~(-1),表明以凹凸棒石为功能添加剂的复合纳米纤维膜材料在空气过滤领域具有良好的应用前景。  相似文献   

6.
以银纳米颗粒作为传热增强材料制备新型的静电纺聚丙烯腈/纳米银(PAN/Ag-NPs复合纳米纤维支撑膜,以癸酸-肉豆蔻酸(CA-MA)二元低共熔物为固-液相变材料,通过物理吸附法制备CA-MA/PAN/Ag-NPs复合定形相变纤维膜。扫描电子显微镜图像观察显示CA-MA被成功地吸附到静电纺PAN/Ag-NPs复合纤维膜的孔隙网络结构中。DSC测试结果表明添加Ag-NPs对复合纤维膜的储热性能没有显著影响,其相变温度约为10~31℃之间,相变焓值约为131~147kJ/kg。此外,添加10wt.%Ag-NPs后CA-MA/PAN复合纤维膜的储热和放热时间分别缩短了约47%和49%。  相似文献   

7.
空气中的污染物颗粒(PM)已经成为一个严重的环境问题,因此急需开发高效的空气过滤器。在本研究中,利用溶液吹纺(SBS)和雾喷技术,采用高横纵比的氮化硼纳米片(BNNSs)对聚丙烯腈(PAN)纳米纤维膜的表面进行雾喷改性,建立起分级结构,从而提高纳米纤维膜的比表面积,有效捕捉PM污染物。研究结果显示,具有分级结构的4-BNNSs/PAN空气过滤膜对PM2.5的过滤效率为95.13%,压降为34 Pa,与纺丝时长相同的PAN过滤膜相比,过滤效率提高了9.46%,而压降只提高了13 Pa,综合过滤表现更佳。本研究表明,通过将高比表面积的BNNSs雾喷到PAN纳米纤维膜的表面,构建分级结构的BNNSs/PAN复合膜是开发新型空气过滤膜的实用改性技术。  相似文献   

8.
采用静电纺丝技术,以二氯甲烷和三氟乙酸混合溶液为溶剂,制备了PET/TPEE复合纳米纤维膜。首先研究了PET与TPEE共混比对所得纳米纤维形貌的影响,并对共混PET/TPEE纳米纤维膜以DSC、TG进行表征。然后,研究了不同面密度复合纳米纤维膜的阻气性能及空气过滤性能。结果表明:经SEM表征,PET/TPEE为4∶1(质量比)时,纤维具有较好的形貌。PET/TPEE共混体系呈现非晶态,熔融温度为251.28℃,失重温度介于两单体之间。随着纤维膜面密度增加,阻气性增加,过滤效率也增加。  相似文献   

9.
为解决当前过滤材料过滤效率低,对空气中悬浮颗粒不能进行有效过滤,并因其不可降解而造成对环境的二次污染问题。本文以左旋聚乳酸(PLLA)为原料,加载天然麦饭石颗粒,通过静电纺丝法制备了可降解的麦饭石/PLLA复合纤维薄膜.利用场发射扫描电镜(FE-SEM)、红外光谱(FTIR)、介电常数测试,过滤性能测试、热失重分析(TGA)对麦饭石/PLLA复合纤维膜微观结构及其对空气中悬浮微粒的过滤性能进行了表征测试.结果表明:复合纤维膜的纤维表面呈扁平状,中间塌陷成沟,并且隔一段距离出现类似竹节状的“结节”,纤维平均直径为644 nm.经测定,复合纤维薄膜的介电常数为3.02,明显高于一次性医用口罩.复合纤维膜对粒径≥1 μm、≥ 2.5 μm、≥10 μm的悬浮颗粒平均过滤效率分别为88.94%、95.41%、96.18%,过滤初阻力稳定维持在35~39 Pa.TGA定量分析表明复合纤维膜对烟气总吸附率大于31.2%,对比医用一次性口罩,复合纤维膜过滤效率明显增强.  相似文献   

10.
柯惠珍  李永贵 《功能材料》2020,(1):1100-1104
以不同质量比例的聚丙烯腈/纳米碳化硅(PAN/SiC)复合纤维膜为支撑材料,以癸酸-棕榈酸-硬脂酸(CPS)三元低共熔物为固-液相变材料,通过物理吸附法制备CPS/PAN/SiC定形相变复合纤维膜。分别采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)和传热测试装置研究不同含量纳米SiC对定形相变复合纤维膜的形貌特征、储热性能、热能储存和释放速率的影响。SEM图像显示负载不同含量纳米SiC对CPS/PAN/SiC定形相变复合纤维膜的形貌结构没有显著影响。DSC测试结果表明随着支撑纤维膜中SiC颗粒含量的增加,定形相变复合纤维膜的相变温度和相变焓值没有明显变化。根据传热测试数据显示随着纳米SiC含量的增加,定形相变复合纤维膜的融化与结晶时间显著缩短了约20%~46%。  相似文献   

11.
以癸酸(CA)、月桂酸(LA)和肉豆蔻酸(MA)为原料制备了新型的脂肪酸三元低共熔物(CA-LA-MA),并将其作为固-液相变材料,以沉积2 h银(Ag)纳米颗粒的静电纺聚丙烯腈(PAN)纳米纤维膜为支撑材料,通过物理吸附法制备了新型的CA-LA-MA/PAN和CA-LA-MA/PAN/Ag定型相变复合纤维膜。研究了磁控溅射Ag纳米层对定型相变复合纤维传热性能的影响。结果表明,沉积Ag纳米层后定型相变复合纤维膜的储热和放热时间分别缩短了31%和25%。制备的CA-LA-MA/PAN/Ag定型相变复合纤维膜的融化温度和结晶温度分别为19.87℃和11.63℃,融化焓值和结晶焓值分别为123.1 kJ/kg和121.5 kJ/kg。  相似文献   

12.
采用静电纺丝技术制备聚苯乙烯(PS)超细纤维、PS/多壁碳纳米管(MWCNTs)复合纳米纤维,并对其纤维形态结构、直径大小及空气过滤性能进行了表征。通过PS纺丝溶液浓度变化调控制备纯PS纤维多孔膜,并通过在PS纺丝液中添加不同含量MWCNTs调控纤维形态结构。SEM分析结果表明PS/MWCNTs复合纤维表面形成"褶皱"型和"山峰"型纳米级突起,复合纤维表面的粗糙度明显增加,且纤维直径明显减小。空气过滤性能测试结果发现这种多级结构使复合膜的过滤效率相比光滑的纯PS纳米纤维膜大幅提高,过滤性能得到明显改善。在85L/min气流速度下,PS/MWCNTs复合膜过滤效率高达99.95%,空气阻力为374.6Pa。选择尺寸较粗的微米级PS纤维(~2μm)和相对较细的纳米级PS/MWCNTs复合纤维(~800nm)进行混纺,调节复合膜堆积密度可使得混纺膜空气阻力降低到235.4Pa,仍能保持高的过滤效率(99.68%)。  相似文献   

13.
结合静电纺丝技术和溶胶-凝胶法制备了聚丙烯腈(PAN)@SiO_2纳米纤维膜,利用γ-氨丙基三乙氧基硅烷(KH550)对PAN@SiO_2纳米纤维膜进行氨基改性,成功制备出APAN@SiO_2复合纳米纤维膜。通过扫描电子显微镜、傅里叶变换红外光谱等方法对纳米纤维膜的形貌、结构进行分析,利用电感耦合等离子体原子发射光谱仪对纤维膜的除Cr(Ⅵ)能力进行表征。结果表明:纳米SiO_2颗粒在PAN纳米纤维膜表面生长后,使得PAN纳米纤维膜的比表面积从8.76m~2/g增大到13.32m~2/g;APAN@SiO_2复合纳米纤维膜的机械性能优异;在Cr(Ⅵ)溶液初始质量浓度为100mg/L、SiO_2溶胶-凝胶时间为6h、KH550体积分数为2%条件下,APAN@SiO_2复合纳米纤维膜除铬效果最好,最大吸附量达到112.6mg/g。吸附过程符合准二级动力学方程和Langmuir等温吸附模型。循环吸附实验表明,APAN@SiO_2复合纳米纤维膜经过4次循环实验后,除铬效率依然保持在50%以上。  相似文献   

14.
相较于传统纤维材料,纳米纤维膜因其高比表面积和超细孔隙率更适合用作空气过滤材料,此外传统的聚丙烯(PP)过滤材料亲水性差,水汽易聚集从而降低其过滤性能;针对传统空气过滤材料亲水性差的问题,基于静电纺丝的方法,以聚丙烯腈(PAN)和强亲水性的聚乙烯吡咯烷酮(PVP)为纺丝原料,制备了PAN/PVP纳米纤维膜,探讨了亲水材料PVP对其纳米纤维膜亲水和过滤性能的影响。采用傅里叶红外光谱、扫描电镜表征了纳米纤维膜的结构,由于亲水性材料PVP的引入,纺丝时纤维中静电导通性好,纺丝液能很好地被拉伸,使纤维直径变小,PVP添加质量为30%时纳米纤维膜的平均直径最小为358.12nm;此外,PVP的引入提高了纳米纤维膜的亲水性能,PVP添加质量为40%时其静态接触角为(11.5±2.5)°;但纳米过滤膜亲水性的增加会影响其过滤效率,PVP添加质量为10%时纳米纤维膜的过滤效率最高为83.4%±3.6%,纤维膜克重为1.17g/m2时品质因子最高为0.10Pa-1,纳米纤维膜具有优异的循环稳定性,300min内过滤稳定性好且过滤压力较低,可应用于对循环过滤性能...  相似文献   

15.
采用一步还原法和螯合法制备Ag/PAN纳米纤维膜。采用SEM,UV,XRD,FT-IR傅里叶变换红外光谱仪对该纤维形貌,银粒子晶型、尺寸、官能团进行表征。得知两种方法都可制备出嵌有(或附着)纳米银颗粒的PAN纳米纤维膜,银粒子的粒径可以达10nm,且经过比较,Ag/PAN膜经过还原处理后,表面Ag粒子的含量更高,分布更均匀。  相似文献   

16.
为了有效滤除输液剂中的不溶性微粒,采用静电纺丝技术制备聚醚砜/聚乙烯醇(PES/PVA)纳米纤维基膜,然后选用戊二醛-水-乙醇、戊二醛-水-丙酮和戊二醛-水-丙三醇三种体系对基膜进行交联处理,制备了PES/PVA微孔滤膜。利用扫描电镜观察微孔膜的表观形貌,利用接触角测试仪测试微孔膜的亲水性能,利用靛蓝颗粒模拟药液中的不溶性微粒,测试PES/PVA微孔膜的过滤效果,探究了溶剂体系和配比对微孔膜表观形貌、亲水性和过滤性能的影响。结果表明:交联体系为戊二醛-水-乙醇时,水和乙醇的体积比为70∶30时,PES/PVA微孔膜的过滤效果最佳,通量为31.0m3/(m~2·h),截留率为63.02%,可用于临床上药液的精密过滤。  相似文献   

17.
本研究采用静电纺丝技术制备掺杂氯化锂(LiCl)的超细聚氨酯(PU)纳米纤维以用作空气过滤,并通过不同的测试方法对其进行表征.研究结果表明,当PU浓度为15 wt%时(盐的固含量为0.3 wt%),纳米纤维的结构形貌较整齐有序,纤维分布均匀,纳米纤维平均直径达到84 nm.此时,纤维的断裂伸长率为186.01%,断裂强度为6.29 MPa;当LiCl溶液浓度升高时,纤维形貌开始变差,力学性能开始下降.当LiCl含量达到0.5 wt%时,其断裂伸长率为131.07%,断裂强度为2.43 MPa.利用此纺丝工艺,本研究制备了一种新型的三层结构的玻璃纤维粗网/克重为2~3 g/m2的纳米纤维膜/聚酯纤维细网,过滤阻力为30.89 Pa,过滤效率94.71%(测试条件为:气体流速设置在32 L/min,NaCl气溶胶颗粒直径0.3μm).  相似文献   

18.
采用γ-氨丙基三乙氧基硅烷(KH-550)对麦饭石(MS)进行改性处理,通过静电纺丝法将改性后的麦饭石(KH550-MS)与聚乳酸(PLA)复合,制备了一种可降解MS/PLA复合纤维薄膜,并研究了其对空气中悬浮微粒的过滤行为,探讨了KH-550改性前后MS的表面特性、分散性、活化率及粒径分布情况。结果表明:经KH-550改性后,MS的表面活化率从5.5%增至91%,粉体表面每nm~2羟基数从8.6降至3.2,比表面积从22213.78m~2/kg增至23546.28m~2/kg,颗粒平均直径由0.31μm降至0.29μm。对空气中悬浮微粒的过滤性能测试结果表明:KH550-MS/PLA复合纤维膜对粒径在0.5~1μm、1~2.5μm、2.5~5μm以及5~10μm不同区间粒径的颗粒过滤效率分别为91.32%、97.11%、99%和99%,高于MS/PLA复合纤维膜。复合纤维膜具有良好的透气性,初阻力维持在34~37Pa范围内。与MS/PLA复合纤维膜相比,KH550-MS/PLA复合纤维膜过滤性能明显增强。  相似文献   

19.
为了研究聚丙烯腈/二醋酸(PAN/CA)复合纳米纤维膜的截滤性能,以N,N-二甲基乙酰胺(DMAC)为溶剂,将PAN/CA以质量比分别为100/0、90/10、80/20共混配制成质量分数为10%的溶液,以静电纺丝技术,制备PAN/CA复合纳米纤维膜.借助扫描电镜(SEM)及相关测试软件,测出复合纳米纤维的平均直径分布...  相似文献   

20.
采用静电纺丝法制备了负载不同含量纳米石墨粉(NG)的聚丙烯腈(PAN)基复合纤维膜作为支撑材料,以癸酸-月桂酸-肉豆蔻酸(CA-LA-MA)三元低共熔物为固-液相变材料,通过物理吸附法制备CA-LA-MA/PAN/NG定形相变复合纤维膜。分别采用傅里叶变换红外光谱仪、扫描电子显微镜、差示扫描量热仪和传热测试装置对定形相变复合纤维膜的化学性能、形貌结构、储热性能、热能储存和释放速率进行深入分析。研究结果表明,CA-LA-MA三元低共熔物成功地被吸附到PAN基复合纤维膜中。制备的定形相变复合纤维膜的相变融化温度约为19℃,相变焓值约为114~131kJ/kg。由于添加了具有高导热系数的NG使定形相变复合纤维膜的热能储存和释放效率明显提高了43%和42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号