首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical losses as a function of the micro-porous layer (MPL) arrangement in Proton Exchange Membrane Fuel Cells (PEMFCs) are investigated by electrochemical impedance spectroscopy (EIS). Net water flux across the polymer membrane in PEMFCs is investigated for various arrangements of the MPL, namely with MPL on the cathode side alone, with MPL on both the cathode and the anode sides and without MPL. EIS and water transport are recorded for various operating conditions, such as the relative humidity of the hydrogen inlet and current density, in a PEMFC fed by fully-saturated air. The cell with an MPL on the cathode side alone has better performance than two other types of cells. Furthermore, the cell with an MPL on only the cathode increases the water flux from cathode to anode as compared to the cells with MPLs on both electrodes and cells without MPL. Oxygen-mass-transport resistances of cells in the presence of an MPL on the cathode are lower than the values for the other two cells, which indicates that the molar concentration of oxygen at the reaction surface of the catalyst layer is higher. This suggests that the MPL forces the liquid water from the cathode side to the anode side and decreases the liquid saturation in GDL at high current densities. Consequently, the MPL helps in maintaining the water content in the polymer membrane and decreases the cathode charge transfer and oxygen-mass transport resistances in PEMFCs, even when the hydrogen inlet has a low relative humidity.  相似文献   

2.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

3.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance.  相似文献   

4.
Effects of hydrophobic treatment and micro-porous layer (MPL) addition to a gas diffusion layer (GDL) in a polymer electrolyte fuel cell (PEFC) have been investigated from water balance analysis at the electrode (catalyst layer), GDL and flow channel in the cathode after a simulated start-up operation. The water balance is directly analyzed by measuring the weight of the adherent water wiped away from each the component. As a result, we find that hydrophobic treatment without MPL leads to the increase in liquid water accumulation at the electrode which limits the oxygen transport to the catalyst and then lowers the cell voltage rapidly during start-up, whereas the treatment decreases the water at the GDL. The water accumulation at the electrode also decreases the cumulative current that represents the power generation and calorific power indispensable for warming up at a temperature below freezing point. On the other hand, we directly find that the hydrophobic treatment with MPL addition suppresses the water accumulation at the electrode, which increases the cumulative current. In addition, it is found that increase in air permeability of a GDL substrate by its coarser structure increases the cumulative current, which is explained by enhancing the exhaust of the product water vapor and liquid as well as by enhancing the oxygen transport directly. Thus, the hydrophobic treatment with MPL addition and larger air permeability of a GDL substrate improve the start-up performance of a PEFC.  相似文献   

5.
A two-dimensional two-phase steady state model of the cathode of a polymer electrolyte membrane fuel cell (PEMFC) is developed using unsaturated flow theory (UFT). A gas flow field, a gas diffusion layer (GDL), a microporous layers (MPL), a finite catalyst layer (CL), and a polymer membrane constitute the model domain. The flow of liquid water in the cathode flow channel is assumed to take place in the form of a mist. The CL is modeled using flooded spherical agglomerate characterization. Liquid water is considered in all the porous layers. For liquid water transport in the membrane, electro-osmotic drag and back diffusion are considered to be the dominating mechanisms. The void fraction in the CL is expressed in terms of practically achievable design parameters such as platinum loading, Nafion loading, CL thickness, and fraction of platinum on carbon. A number of sensitivity studies are conducted with the developed model. The optimum operating temperature of the cell is found to be 80-85 °C. The optimum porosity of the GDL for this cell is in the range of 0.7-0.8. A study by varying the design parameters of the CL shows that the cell performs better with 0.3-0.35 mg cm−2 of platinum and 25-30 wt% of ionomer loading at high current densities. The sensitivity study shows that a multi-variable optimization study can significantly improve the cell performance. Numerical simulations are performed to study the dependence of capillary pressure on liquid saturation using various correlations. The impact of the interface saturation on the cell performance is studied. Under certain operating conditions and for certain combination of materials in the GDL and CL, it is found that the presence of a MPL can deteriorate the performance especially at high current density.  相似文献   

6.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

7.
In order to investigate the effect of capillary pressure on the transport of liquid water in the cathode gas diffusion layer (GDL) of a polymer electrolyte fuel cell, a one-dimensional steady-state mathematical model was developed, including the effect of temperature on the capillary pressure. Numerical results indicate that the liquid water saturation significantly increases with increases in the operating temperature of the fuel cell. An elevated operating temperature has an undesirable influence on the removal of liquid water inside the GDL. A reported peculiar phenomenon in which the flooding of the fuel cell under a high operating temperature and an over-saturated environment is more serious in a GDL combined with a micro-porous layer (MPL) than in a GDL without an MPL [Lim and Wang, Electrochim. Acta 49 (2004), 4149–4156] is explained based on the present analysis.  相似文献   

8.
Anode water removal (AWR) is studied as a diagnostic tool to assess cathode gas diffusion layer (GDL) flooding in PEM fuel cells. This method uses a dry hydrogen stream to remove product water from the cathode, showing ideal fuel cell performance in the absence of GDL mass transfer limitations related to water. When cathode GDL flooding is limiting, the cell voltage increases as the hydrogen stoichiometry is increased. Several cathode GDLs were studied to determine the effect of microporous layer (MPL) and PTFE coating. The largest voltage gains occur with the use of cathode GDLs without an MPL since these GDLs are prone to higher liquid water saturation. Multiple GDLs are studied on the cathode side to exacerbate GDL flooding conditions to further confirm the mechanism of the AWR process. Increased temperature and lower cathode RH allow for greater overall water removal so the voltage improvement occurs faster, though this leads to quicker membrane dehydration.  相似文献   

9.
Severe flooding can be critical in a fuel cell vehicle operating at a high current density, and in a fuel cell vehicle at the initial stage of start up. It is often difficult to remove the condensed water from the cathode gas diffusion layer (GDL) of the fuel cell because of the surface tension between the water and the GDL. In this research, in order to remove the condensed water from the cathode GDL, a small amount of hydrogen was injected into the cathode reactant gases. The results showed that the hydrogen addition method successfully removed the liquid water from the cathode GDL. Water removal was verified for various hydrogen flow rates and hydrogen addition durations. Furthermore, the dew point temperature of the outlet gas at the cathode was observed to determine the amount of water removed from the cathode GDL. In addition, the water droplet in the cathode gas flow channel was visualized by using a transparent cell. Furthermore, degradation tests are also performed. Considering the degradation test, the hydrogen addition method is expected to be effective in mitigating cathode flooding.  相似文献   

10.
A new technique is presented to characterize and quantify the two-phase flow in the anode and cathode flow field channels using simultaneous anode and cathode visualization combined with image processing. In situ visualization experiments were performed at 35 °C with stoichiometric ratios (an/ca) of 1.5/2.5, 1.5/5, 3/8 to elucidate two-phase flow dynamics at lower temperature/low power conditions, when excess liquid water in the cell can be especially prevalent. Video processing algorithms were developed to automatically detect and quantify dynamic and static liquid water present in the flow field channels, as well as discern the distribution of water among different two-phase flow structures. The water coverage ratio was introduced as a parameter to capture the time-averaged flow field water content information through recorded high speed video sequences. The automated processing allows for efficient and robust spatial and temporal averaging of steady state channel water over very large visualization data sets acquired through high speed imaging. The developed algorithm calculates the water coverage ratio using the liquid water in the channels which is contacting the GDL surface, and selectively removes the superficial condensation on the visualization window from the coverage area. The water coverage ratio and distribution metrics techniques were demonstrated by comparing the performance of Freudenberg and Toray gas diffusion layers (GDLs) from a water management perspective, including direct anode to cathode comparisons of simultaneous water coverage data for each GDL sample. The anode water coverage ratio was found to exceed the cathode for both GDL samples at most operating conditions tested in this work. The Freudenberg GDL consistently demonstrated a higher water coverage ratio in the flow field gas channels than the Toray GDL, while the Toray GDL indicated a propensity for greater water retention within the membrane electrode assembly (MEA) based on performance, high frequency resistance (HFR), and water coverage metrics.  相似文献   

11.
A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.  相似文献   

12.
A model of the cathode side of a Proton Exchange Membrane Fuel Cell coupling the transfers in the GDL with the phenomena taking place in the cathode catalyst layer and the protonic transport in the membrane is presented. This model combines the efficiency of pore network models to simulate the liquid water formation in the fibrous substrate of the gas diffusion layer (GDL) and the simplicity of a continuum approach in the micro-porous layer (MPL). The model allows simulating the liquid pattern inside the cathode GDL taking into account condensation and evaporation phenomena under the assumption that the water produced by the electro-chemical reactions enters the MPL in vapor form from the catalyst layer. Results show the importance of the coupling between the transfers within the various layers, especially when liquid water forms as the result of condensation in the region of the GDL fibrous substrate located below the rib.  相似文献   

13.
Non‐uniform current distribution in polymer electrolyte membrane (PEM) fuel cells results in local over‐heating, accelerated ageing, and lower power output than expected. This issue is quite critical when a fuel cell experiences water flooding. In this study, the performance of a PEM fuel cell is investigated under cathode flooding conditions. A two‐dimensional approach is proposed for a single PEM fuel cell based on conservation laws and electrochemical equations to provide useful insight into water transport mechanisms and their effect on the cell performance. The model results show that inlet stoichiometry and humidification, and cell operating pressure are important factors affecting cell performance and two‐phase transport characteristics. Numerical simulations have revealed that the liquid saturation in the cathode gas distribution layer (GDL) could be as high as 20%. The presence of liquid water in the GDL decreases oxygen transport and surface coverage of active catalyst, which in turn degrades the cell performance. The thermodynamic quality in the cathode flow channel is found to be greater than 99.7%, indicating that liquid water in the cathode gas channel exists in very small amounts and does not interfere with the gas phase transport. A detailed analysis of the operating conditions shows that cell performance should be optimized based on the maximum average current density achieved and the magnitude of its dispersion from its mean value. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Water management is vital for the successful development of PEM fuel cells. Water should be carefully balanced within a PEM fuel cell to meet the conflicting requirements of membrane hydration and cathode anti-flooding. In order to understand the key factors that can improve water management and fuel cell performance, the cathodes with different structures and properties are prepared and tested in this study. The experimental results show that even though no micro-porous layer (MPL) is placed between the cathode catalyst layer (CCL) and macro-porous substrate (MaPS), a hydrophobic CCL is effective to prevent cathode flooding and keep membrane hydrated. The impedance study and the analysis of the polarization curves indicate that the optimized hydrophobic micro-porous structure in the MPL or the hydrophobic CCL could be mainly responsible for the improved water management in PEM fuel cells, which functions as a watershed to provide wicking of liquid water to the MaPS and increase the membrane hydration by enhancing the back-diffusion of water from the cathode side to the anode side through the membrane.  相似文献   

15.
蒋杨  焦魁 《热科学与技术》2019,18(3):200-205
针对质子交换膜燃料电池(PEMFC)水管理开展了研究,建立了一维非等温两相流解析模型,研究了不同电流密度、微孔层接触角和不同加湿方案对电池内部水分布和温度分布的影响,提出了更好的进气加湿方案。结果表明:电流密度增大会导致阳极拖干、阴极水淹加剧,导致电池各部分温度上升。因各层材料亲水性不同,在交界面处能观察到液态水阶跃现象。增大微孔层接触角促进阴极液态水反扩散到阳极,一定程度上缓解阳极变干,但过大的接触角可能导致阴极水淹加剧。通过采取"阳极充分加湿、阴极低加湿"的进气加湿方案可以有效提高电池性能,并且能在一定程度改善电池内部受热,提高电池使用寿命。  相似文献   

16.
This study investigates the effects of the relative humidity (RH) of the reactants on the cell performance and local transport phenomena in proton exchange membrane fuel cells with parallel and interdigitated flow fields. A three-dimensional model was developed taking into account the effect of the liquid water formation on the reactant transport. The results indicate that the reactant RH and the flow field design all significantly affect cell performance. For the same operating conditions and reactant RH, the interdigitated design has better cell performance than the parallel design. With a constant anode RH = 100%, for lower operating voltages, a lower cathode RH reduces cathode flooding and improves cell performance, while for higher operating voltages, a higher cathode RH maintains the membrane hydration to give better cell performance. With a constant cathode RH = 100%, for lower operating voltages, a lower anode RH not only provides more hydrogen to the catalyst layer to participate in the electrochemical reaction, but also increases the difference in the water concentrations between the anode and cathode, which enhances back-diffusion of water from the cathode to the anode, thus reducing cathode flooding to give better performance. However, for higher operating voltages, the cell performance is not dependent on the anode RH.  相似文献   

17.
Water management remains a significant challenge for the Proton Exchange Membrane Fuel Cell (PEMFC) with respect to performance, lifetime and operational flexibility. In recent years, microporous layers (MPL) have been widely used on the cathode side of the PEMFC in order to improve fuel cell performance and water management capabilities. Many modeling and experimental studies have with limited success attempted to analyze the underlying mechanisms that are responsible for the performance improvement due to the MPL. In this study, porous inserts along with various in-situ experimental techniques are used to investigate the MPLs. It was observed that the anode pressure drop increased when a cathode MPL was present, indicating water cross-over from the cathode towards the anode side. Further testing identified that the MPL improved cell performance due to the reduction of water saturation in the cathode catalyst layer, which resulted in enhanced oxygen diffusion. The influence of the MPL on the anode side was also studied with the aid of porous inserts and other techniques, and it was observed that the anode MPL improves cell voltage stability and reduces water accumulation in the anode catalyst layer. The present investigation provides further important information on the critical role of the MPL in the PEMFC.  相似文献   

18.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

19.
This study presents the benefit to an operating direct methanol fuel cell (DMFC) by coating a micro-porous layer (MPL) on the surface of anode gas diffusion layer (GDL). Taking the membrane electrode assembly (MEA) with and without the anodic MPL structure into account, the performances of the two types of MEA are evaluated by measuring the polarization curves together with the specific power density at a constant current density. Regarding the cell performances, the comparisons between the average power performances of the two different MEAs at low and high current density, various methanol concentrations and air flow rates are carried out by using the electrochemical impedance spectroscopy (EIS) technique. In contrast to conventional half cell EIS measurements, both the anode and cathode impedance spectra are measured in real-time during the discharge regime of the DMFC. As comparing each anode and cathode EIS between the two different MEAs, the influences of the anodic MPL on the anode and cathode reactions are systematically discussed and analyzed. Furthermore, the results are used to infer complete and reasonable interpretations of the combined effects caused by the anodic MPL on the full cell impedance, which correspond with the practical cell performance.  相似文献   

20.
Takemi Chikahisa 《传热工程》2013,34(2-3):258-265
In polymer electrolyte membrane (PEM) fuel cells, the generated water transfers from the catalyst layer to the gas channel through microchannels of different scales in a two phase flow. It is important to know details of the water transport phenomena to realize better cell performance, as the water causes flooding at high current density conditions and gives rise to startup problems at freezing temperatures. This article presents specifics of the ice formation characteristics in the catalyst layer and in the gas diffusion layer (GDL) with photos taken with an optical microscope and a cryo scanning electron microscope (cryo-SEM). The observation results show that cold starts at –10°C result in ice formation at the interface between the catalyst layer and the microporous layer (MPL) of the GDL, and that at –20°C most of the ice is formed in the catalyst layer. Water transport phenomena through the microporous layer and GDL are also a matter of interest, because the role of the MPL is not well understood from the water management angle. The article discusses the difference in the water distribution at the interface between the catalyst layer and the GDL arising from the presence of such a microporous layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号