首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question. Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns $\lfloor\frac{k}{2} \rfloor-1$ element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching?2.  相似文献   

2.
We consider the problem of updating a single-source shortest path in either a directed or an undirected graph, with positive real edge weights. Our algorithms for the incremental problem (handling edge insertions and cost decrements) work for any graph; they have optimal space requirements and query time, but their performances depend on the class of the considered graph. The cost of updates is computed in terms of amortized complexity and depends on the size of the output modifications. In the case of graphs with bounded genus (including planar graphs), graphs with bounded arboricity (including bounded degree graphs), and graphs with bounded treewidth, the incremental algorithms require O(log n) amortized time per vertex update, where a vertex is considered updated if it reduces its distance from the source. For general graphs with n vertices and m edges our incremental solution requires O( log n) amortized time per vertex update. We also consider the decremental problem for planar graphs, providing algorithms and data structures with analogous performances. The algorithms, based on Dijkstra's technique [6], require simple data structures that are really suitable for a practical and straightforward implementation. Received January 1995; revised February 1997.  相似文献   

3.
In a graph G a matching is a set of edges in which no two edges have a common endpoint. An induced matching is a matching in which no two edges are linked by an edge of G. The maximum induced matching (abbreviated MIM) problem is to find the maximum size of an induced matching for a given graph G. This problem is known to be NP-hard even on bipartite graphs or on planar graphs. We present a polynomial time algorithm which given a graph G either finds a maximum induced matching in G, or claims that the size of a maximum induced matching in G is strictly less than the size of a maximum matching in G. We show that the MIM problem is NP-hard on line-graphs, claw-free graphs, chair-free graphs, Hamiltonian graphs and r-regular graphs for r \geq 5. On the other hand, we present polynomial time algorithms for the MIM problem on (P 5,D m )-free graphs, on (bull, chair)-free graphs and on line-graphs of Hamiltonian graphs.  相似文献   

4.
We consider the two problems of finding the maximum number of node disjoint triangles and edge disjoint triangles in an undirected graph. We show that the first (respectively second) problem is polynomially solvable if the maximum degree of the input graph is at most 3 (respectively 4), whereas it is APX-hard for general graphs and NP-hard for planar graphs if the maximum degree is 4 (respectively 5) or more.  相似文献   

5.
Zeev Nutov 《Algorithmica》2006,44(3):213-231
A graph is called {\em $\el$-connected from $U$ to $r$} if there are $\el$ internally disjoint paths from every node $u \in U$ to $r$. The {\em Rooted Subset Connectivity Augmentation Problem} ({\em RSCAP}) is as follows: given a graph $G=(V+r,E)$, a node subset $U \subseteq V$, and an integer $k$, find a smallest set $F$ of new edges such that $G+F$ is $k$-connected from $U$ to $r$. In this paper we consider mainly a restricted version of RSCAP in which the input graph $G$ is already $(k-1)$-connected from $U$ to $r$. For this version we give an $O(\ln\! |U|)$-approximation algorithm, and show that the problem cannot achieve a better approximation guarantee than the Set Cover Problem (SCP) on $|U|$ elements and with $|V|-|U|$ sets. For the general version of RSCAP we give an $O(\ln k \ln\!|U|)$-approximation algorithm. For $U=V$ we get the {\em Rooted Connectivity Augmentation Problem} ({\em RCAP}). For directed graphs RCAP is polynomially solvable, but for undirected graphs its complexity status is not known: no polynomial algorithm is known, and it is also not known to be NP-hard. For undirected graphs with the input graph $G$ being $(k-1)$-connected from $V$ to $r$, we give an algorithm that computes a solution of size at most ${\it opt}+\min\{opt,k\}/2$, where {\it opt} denotes the optimal solution size.  相似文献   

6.
Given four distinct vertices s1,s2,t1, and t2 of a graph G, the 2-disjoint paths problem is to determine two disjoint paths, p1 from s1 to t1 and p2 from s2 to t2, if such paths exist. Disjoint can mean vertex- or edge-disjoint. Both, the edge- and the vertex-disjoint version of the problem, are NP-hard in the case of directed graphs. For undirected graphs, we show that the O(mn)-time algorithm of Shiloach can be modified to solve the 2-vertex-disjoint paths problem in only O(n + mα(m,n)) time, where m is the number of edges in G, n is the number of vertices in G, and where α denotes the inverse of the Ackermann function. Our result also improves the running time for the 2-edge-disjoint paths problem on undirected graphs as well as the running times for the 2-vertex- and the 2-edge-disjoint paths problem on dags.  相似文献   

7.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

8.
In this paper a parallel algorithm is given that, given a graph G=(V,E) , decides whether G is a series parallel graph, and, if so, builds a decomposition tree for G of series and parallel composition rules. The algorithm uses O(log \kern -1pt |E|log ^\ast \kern -1pt |E|) time and O(|E|) operations on an EREW PRAM, and O(log \kern -1pt |E|) time and O(|E|) operations on a CRCW PRAM. The results hold for undirected as well as for directed graphs. Algorithms with the same resource bounds are described for the recognition of graphs of treewidth two, and for constructing tree decompositions of treewidth two. Hence efficient parallel algorithms can be found for a large number of graph problems on series parallel graphs and graphs with treewidth two. These include many well-known problems like all problems that can be stated in monadic second-order logic. Received July 15, 1997; revised January 29, 1999, and June 23, 1999.  相似文献   

9.
Recently, there has been significant theoretical progress towards fixed-parameter algorithms for the DOMINATING SET problem of planar graphs. It is known that the problem on a planar graph with n vertices and dominating number k can be solved in time using tree/branch-decomposition based algorithms. In this paper, we report computational results of Fomin and Thilikos algorithm which uses the branch-decomposition based approach. The computational results show that the algorithm can solve the DOMINATING SET problem of large planar graphs in a practical time and memory space for the class of graphs with small branchwidth. For the class of graphs with large branchwidth, the size of instances that can be solved by the algorithm in practice is limited to about one thousand edges due to a memory space bottleneck. The practical performances of the algorithm coincide with the theoretical analysis of the algorithm. The results of this paper suggest that the branch-decomposition based algorithms can be practical for some applications on planar graphs.  相似文献   

10.
Minor Containment is a fundamental problem in Algorithmic Graph Theory used as a subroutine in numerous graph algorithms. A model of a graph H in a graph G is a set of disjoint connected subgraphs of G indexed by the vertices of H, such that if {u,v} is an edge of H, then there is an edge of G between components C u and C v . A graph H is a minor of G if G contains a model of H as a subgraph. We give an algorithm that, given a planar n-vertex graph G and an h-vertex graph H, either finds in time $\mathcal{O}(2^{\mathcal{O}(h)} \cdot n +n^{2}\cdot\log n)$ a model of H in G, or correctly concludes that G does not contain H as a minor. Our algorithm is the first single-exponential algorithm for this problem and improves all previous minor testing algorithms in planar graphs. Our technique is based on a novel approach called partially embedded dynamic programming.  相似文献   

11.
Given a set of n intervals representing an interval graph, the problem of finding a maximum matching between pairs of disjoint (nonintersecting) intervals has been considered in the sequential model. In this paper we present parallel algorithms for computing maximum cardinality matchings among pairs of disjoint intervals in interval graphs in the EREW PRAM and hypercube models. For the general case of the problem, our algorithms compute a maximum matching in O( log 3 n) time using O(n/ log 2 n) processors on the EREW PRAM and using n processors on the hypercubes. For the case of proper interval graphs, our algorithm runs in O( log n ) time using O(n) processors if the input intervals are not given already sorted and using O(n/ log n ) processors otherwise, on the EREW PRAM. On n -processor hypercubes, our algorithm for the proper interval case takes O( log n log log n ) time for unsorted input and O( log n ) time for sorted input. Our parallel results also lead to optimal sequential algorithms for computing maximum matchings among disjoint intervals. In addition, we present an improved parallel algorithm for maximum matching between overlapping intervals in proper interval graphs. Received November 20, 1995; revised September 3, 1998.  相似文献   

12.
A cycle cover of a graph is a spanning subgraph, each node of which is part of exactly one simple cycle. A k-cycle cover is a cycle cover where each cycle has length at least k. Given a complete directed graph with edge weights zero and one, Max-k-DDC(0,1) is the problem of finding a k-cycle cover with maximum weight. We present a 2/3 approximation algorithm for Max-k-DDC(0,1) with running time O(n 5/2). This algorithm yields a 4/3 approximation algorithm for Max-k-DDC(1,2) as well. Instances of the latter problem are complete directed graphs with edge weights one and two. The goal is to find a k-cycle cover with minimum weight. We particularly obtain a 2/3 approximation algorithm for the asymmetric maximum traveling salesman problem with distances zero and one and a 4/3 approximation algorithm for the asymmetric minimum traveling salesman problem with distances one and two. As a lower bound, we prove that Max-k-DDC(0,1) for k 3 and Max-k-UCC(0,1) (finding maximum weight cycle covers in undirected graphs) for k 7 are \APX-complete.  相似文献   

13.
In automatic graph drawing a given graph has to be laid out in the plane, usually according to a number of topological and aesthetic constraints. Nice drawings for sparse nonplanar graphs can be achieved by determining a maximum planar subgraph and augmenting an embedding of this graph. This approach appears to be of limited value in practice, because the maximum planar subgraph problem is NP-hard.We attack the maximum planar subgraph problem with a branch-and-cut technique which gives us quite good, and in many cases provably optimum, solutions for sparse graphs and very dense graphs. In the theoretical part of the paper, the polytope of all planar subgraphs of a graphG is defined and studied. All subgraphs of a graphG, which are subdivisions ofK 5 orK 3,3, turn out to define facets of this polytope. For cliques contained inG, the Euler inequalities turn out to be facet-defining for the planar subgraph polytope. Moreover, we introduce the subdivision inequalities,V 2k inequalities, and the flower inequalities, all of which are facet-defining for the polytope. Furthermore, the composition of inequalities by 2-sums is investigated.We also present computational experience with a branch-and-cut algorithm for the above problem. Our approach is based on an algorithm which searches for forbidden substructures in a graph that contains a subdivision ofK 5 orK 3,3. These structures give us inequalities which are used as cutting planes.Finally, we try to convince the reader that the computation of maximum planar subgraphs is indeed a practical tool for finding nice embeddings by applying this method to graphs taken from the literature.  相似文献   

14.
Consider a weighted transitive graph, where each vertex is assigned a positive weight. Given a positive integerk, the maximumk-covering problem is to findk disjoint cliques covering a set of vertices with maximum total weight. An 0(kn 2)-time algorithm to solve the problem in a transitive graph is proposed, wheren is the number of vertices. Based on the proposed algorithm the weighted version of a number of problems in VLSI layout (e.g.,k-layer topological via minimization), computational geometry (e.g., maximum multidimensionalk-chain), graph theory (e.g., maximumk-independent set in interval graphs), and sequence manipulation (e.g., maximum increasingk-subsequence) can be solved inO(kn 2), wheren is the input size.This Work was supported in part by the National Science Foundation under Grant MIP-8709074 and MIP-8921540.  相似文献   

15.
Triangulation of planar graphs under constraints is a fundamental problem in the representation of objects. Related keywords are graph augmentation from the field of graph algorithms and mesh generation from the field of computational geometry. We consider the triangulation problem for planar graphs under the constraint to satisfy 4-connectivity. A 4-connected planar graph has no separating triangles, i.e., cycles of length 3 which are not a face. We show that triangulating embedded planar graphs without introducing new separating triangles can be solved in linear time and space. If the initial graph had no separating triangle, the resulting triangulation is 4-connected. If the planar graph is not embedded, then deciding whether there exists an embedding with at most k separating triangles is NP-complete. For biconnected graphs a linear-time approximation which produces an embedding with at most twice the optimal number is presented. With this algorithm we can check in linear time whether a biconnected planar graph can be made 4-connected while maintaining planarity. Several related remarks and results are included. Received August 1, 1995; revised July 8, 1996, and August 23, 1996.  相似文献   

16.
In this paper we investigate the k-path cover problem for graphs, which is to find the minimum number of vertex disjoint k-paths that cover all the vertices of a graph. The k-path cover problem for general graphs is NP-complete. Though notable applications of this problem to database design, network, VLSI design, ring protocols, and code optimization, efficient algorithms are known for only few special classes of graphs. In order to solve this problem for cacti, i.e., graphs where no edge lies on more than one cycle, we introduce the so-called Steiner version of the k-path cover problem, and develop an efficient algorithm for the Steiner k-path cover problem for cacti, which finds an optimal k-path cover for a given cactus in polynomial time.  相似文献   

17.
S. Kapoor  H. Ramesh 《Algorithmica》2000,27(2):120-130
We present an O(NV + V 3 ) time algorithm for enumerating all spanning trees of a directed graph. This improves the previous best known bound of O(NE + V+E) [1] when V 2 =o(N) , which will be true for most graphs. Here, N refers to the number of spanning trees of a graph having V vertices and E edges. The algorithm is based on the technique of obtaining one spanning tree from another by a series of edge swaps. This result complements the result in the companion paper [3] which enumerates all spanning trees in an undirected graph in O(N+V+E) time. Received September 11, 1997; revised March 6, 1998.  相似文献   

18.
A nonplanar graph G is near-planar if it contains an edge e such that Ge is planar. The problem of determining the crossing number of a near-planar graph is exhibited from different combinatorial viewpoints. On the one hand, we develop min-max formulas involving efficiently computable lower and upper bounds. These min-max results are the first of their kind in the study of crossing numbers and improve the approximation factor for the approximation algorithm given by Hliněny and Salazar (Graph Drawing GD’06). On the other hand, we show that it is NP-hard to compute a weighted version of the crossing number for near-planar graphs.  相似文献   

19.
Cluster Editing is transforming a graph by at most k edge insertions or deletions into a disjoint union of cliques. This problem is fixed-parameter tractable (FPT). Here we compute concise enumerations of all minimal solutions in O(2.27 k +k 2 n+m) time. Such enumerations support efficient inference procedures, but also the optimization of further objectives such as minimizing the number of clusters. In an extended problem version, target graphs may have a limited number of overlaps of cliques, measured by the number t of edges that remain when the twin vertices are merged. This problem is still in FPT, with respect to the combined parameter k and t. The result is based on a property of twin-free graphs. We also give FPT results for problem versions avoiding certain artificial clusterings. Furthermore, we prove that all solutions with minimal edit sequences differ on a so-called full kernel with at most k 2/4+O(k) vertices, that can be found in polynomial time. The size bound is tight. We also get a bound for the number of edges in the full kernel, which is optimal up to a (large) constant factor. Numerous open problems are mentioned.  相似文献   

20.
The Min-Min problem of finding a disjoint-path pair with the length of the shorter path minimized is known to be NP-hard and admits no K-approximation for any K>1 in the general case (Xu et al. in IEEE/ACM Trans. Netw. 14:147–158, 2006). In this paper, we first show that Bhatia et al.’s NP-hardness proof (Bhatia et al. in J. Comb. Optim. 12:83–96, 2006), a claim of correction to Xu et al.’s proof (Xu et al. in IEEE/ACM Trans. Netw. 14:147–158, 2006), for the edge-disjoint Min-Min problem in the general undirected graphs is incorrect by giving a counter example that is an unsatisfiable 3SAT instance but classified as a satisfiable 3SAT instance in the proof of Bhatia et al. (J. Comb. Optim. 12:83–96, 2006). We then gave a correct proof of NP-hardness of this problem in undirected graphs. Finally we give a polynomial-time algorithm for the vertex disjoint Min-Min problem in planar graphs by showing that the vertex disjoint Min-Min problem is polynomially solvable in st-planar graph G=(V,E) whose corresponding auxiliary graph G(V,E∪{e(st)}) can be embedded into a plane, and a planar graph can be decomposed into several st-planar graphs whose Min-Min paths collectively contain a Min-Min disjoint-path pair between s and t in the original graph G. To the best of our knowledge, these are the first polynomial algorithms for the Min-Min problems in planar graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号