首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Ceramics International》2016,42(9):11270-11274
Porous mullites with a whiskers framework and high porosities were fabricated by the reaction sintering (1100 to 1600 °C, 1 h, in an airtight container) of an aerogel block shaped by the sol–gel transition of a mullite precursor composed of SiO2 sol, Al2O3 and AlF3 powders (as reaction catalyst). The effect of heating temperatures on porosity, whisker formation, microstructure feature and compressive strength of the porous mullites was determined by XRD, SEM and compressive test. The results indicate that after heating at temperatures from 1100 to 1600 °C, the porosities of the mullites varied within the range of 84.1–80.2%. The whiskers in the framework well lap-jointed each other to form the large space and became elongated and smooth at high temperatures due to the accelerated vapor–solid reaction rate. A maximum compressive strength of 16.1 MPa was obtained for the whiskers framework heated at 1600 °C; this strength was attributed to the strong bonding among the smooth whiskers.  相似文献   

2.
《Ceramics International》2016,42(16):18711-18717
Bimodal porous structures were prepared by combining conventional sacrificial template and partial sintering methods. These porous structures were analysed by comparing pore characteristics and gas permeation properties of alumina/mullite specimens sintered at different temperatures. The pore characteristics were investigated by SEM, mercury porosimetry, and capillary flow porosimetry. A bimodal pore structure was observed. One type of pore was induced by starch, which acted as a sacrificial template. The other pore type was due to partial sintering. The pores produced by starch were between 2 and 10 µm whereas those produced by partial sintering exhibited pore size of 0.1–0.5 µm. The effects of sintering temperature on porosity, gas permeability, and mullite phase formation were studied. The formation of the mullite phase was confirmed by XRD. Compressive strengths of 37.9 MPa and 12.4 MPa with porosities of 65.3% and 70% were achieved in alumina and mullite specimens sintered at 1600 °C.  相似文献   

3.
《Ceramics International》2016,42(5):6080-6087
In this work, anorthite–mullite–corundum porous ceramics were prepared from construction waste and Al2O3 powders by adding AlF3 and MoO3 as mineralizer and crystallization catalyst, respectively. The effects of the sintering temperature and time on open porosity, mechanical properties, pore size distribution, microstructure, and phase composition were characterized in detail. The results showed that the formation of the mullite whiskers and the properties of the anorthite–mullite–corundum porous ceramics depended more on the sintering temperature than the holding time. By co-adding 12 wt% AlF3 and 4 wt% MoO3, mullite whiskers were successfully obtained at sintering temperatures upon 1350 °C for 1 h. Furthermore, the resultant specimens exhibited excellent properties, including open porosity of 66.1±0.7%, biaxial flexural strength of 23.8±0.9 MPa, and average pore size of 1.32 µm (the corresponding cumulative volume percent was 37.29%).  相似文献   

4.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

5.
《Ceramics International》2016,42(15):17179-17184
Mullite-whisker-reinforced anorthite-mullite-corundum porous ceramics were prepared from construction waste and Al2O3 powder by adding AlF3 and MoO3 as the additive and crystallization catalyst, respectively. The effects of AlF3 and MoO3 content on the properties of mullite whiskers, such as open porosity, mechanical properties, pore size distribution, microstructure and phase structure, were investigated in detail. The results showed that the morphology of the mullite whiskers and properties of the porous ceramics were greatly influenced by the AlF3 and MoO3 content. The specimen obtained by co-adding 12 wt% AlF3 and 3 wt% MoO3, and sintering at 1350 °C for 1 h, exhibited excellent properties, including an open porosity of 67.4±0.5% and biaxial flexural strength of 24.0±0.8 MPa. The mullite whiskers were uniformly distributed; the whiskers had a diameter of 0.05–0.5 µm, length of 8–10 µm, and aspect ratios (length to diameter ratio) of 20–30 on average.  相似文献   

6.
《Ceramics International》2023,49(7):10238-10248
High-strength ceramics were prepared from high alumina fly ash (HAFA) and activated alumina as raw materials with magnesia as a sintering additive. The growth kinetics and influence mechanism of secondary mullite whiskers were investigated. Meanwhile, the effects of the Al2O3/SiO2 mass ratio (A/S) and the amount of magnesia on the content and morphology of mullite in the green body were investigated, so as to emphasize the effect of the liquid phase in the sintering process on the growth of secondary mullite whiskers. The results showed that the aspect ratio of secondary mullite whiskers increased significantly after adding activated alumina to increase the A/S ratio of raw materials. When 30 wt% activated alumina was added, the mullite content increased by 5.39%, and the whisker length increased from 1.36 μm to 4.18 μm. The addition of magnesia improved the liquid phase formed during the sintering process and the K value method was used to determine the sintering liquid phase content under various conditions. It was observed that increasing the magnesia level by 1 wt% could raise the liquid phase content by 5–7%. When the total liquid content of the system was 30–40%, the growth activation energy in the diameter direction of the whisker reduced significantly, promoting the growth of secondary mullite whiskers along the C axis. The morphology of mullite gradually developed from fibrous to long columnar crystal, making it combine more densely with the green body matrix. Furthermore, the staggered long columnar mullite crystal structure changes the fracture mode of ceramics from intergranular to transgranular fracture, which fully uses the high mechanical strength of mullite. As a result, the fracture energy and strength of ceramics are significantly improved.  相似文献   

7.
《Ceramics International》2020,46(4):4086-4094
Recycled coal cinder was utilized as a raw material for the preparation of a high-porosity and low-cost whisker-mullite/alumina membrane support via in situ synthesis of mullite whiskers with MoO3 and AlF3 as additives. The effects of the sintering temperature and additives on the physical properties (porosity, shrinkage, phase composition, microstructure, pore size, nitrogen permeation, and tortuosity factor) of the porous mullite-based membrane supports were investigated in detail. Based on the synergistic effect of AlF3 and MoO3, the porosity of the as-synthesized membrane supports was as high as 60%. This is attributed to the reduction in the viscosity of the solid phase reaction interface between the mullite precursors by the MoO3 additives, thus promoting the formation of mullite grains, while the AlF3 additive effectively promoted the anisotropic growth of whisker-mullite via vapor deposition. This whisker-mullite membrane support with a cross-interlocking structure has an inherently unimodal pore-size distribution and low tortuosity factor (~0.4).  相似文献   

8.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

9.
Ceramic membranes with high porosity and excellent separation efficiency are necessary for the efficient treatment of large-scale wastewaters. However, the conventional ceramic membranes are usually prepared by particles-packing, which inhibits the advances of separation efficiency because of the low porosity and connectivity. Here, a fibrous ceramic membrane with mullite whiskers-interlocked structure was prepared by gas-solid reaction. The effects of aluminum fluoride (AlF3) on the formation and growth of mullite whiskers, and then the permeability and selectivity of the ceramic membranes were investigated. With the increase of AlF3 contents, the mullite phase evolved from needle-like, rod-like to flake-like structure, thus the catalyst accelerated the growth of mullite whiskers in the diameter direction. For the ceramic membrane sintered at 1400°C, the porosity increased from 58% to 76% while the average pore sizes increased from 0.65 to 3.93 μm because of the whisker-constructed structures. For the ceramic membrane sintered at 1450°C, the emulsion flux increased stably from 295 L/(m2·h) to 992 L/(m2·h) with the increase of trans-membrane pressure, and the oil rejection exceeded 98%. Thus, this study provides a feasible strategy for the preparation of ceramic membranes with high porosity and excellent separation performances.  相似文献   

10.
Porous mullite ceramics with unidirectionally oriented pores were prepared by an extrusion method to investigate their capillary rise properties. Rayon fibers 16.5 μm in diameter and 800 μm long were used as the pore formers by kneading with alumina powder, kaolin clay, China earthen clay and binder with varying Fe2O3 contents of 0, 5 and 7 mass%. The resulting pastes were extruded into cylindrical tubes (outer diameter (OD) 30–50 mm and inner diameter (ID) 20–30 mm), dried at room temperature and fired at 1500 °C for 4 h. The bulk densities of the resulting porous ceramics ranged from 1.31 to 1.67 g/cm3, with apparent porosities of 43.2–59.3%. The pore size distributions measured by Hg porosimetry showed a sharp peak at 10.0 μm in the sample without Fe2O3 and at 15.6 μm in the samples containing Fe2O3; these pores, which arose from the burnt-out rayon fibers, corresponded to total pore volumes ranging from 0.24 to 0.34 ml/g. SEM showed a microstructure consisting of unidirectionally oriented pores in a porous mullite matrix. Prismatic mullite crystals were well developed on the surfaces of the pore walls owing to the liquid phase formed by the Fe2O3 component added to color the samples. The bending strengths of the tubular samples ranged from 15.6 to 26.3 MPa. The height of capillary rise, measured under controlled relative humidities (RH) of 50, 65 and 85%, was greater in the ceramics containing Fe2O3 than in those without Fe2O3, especially in the thinner samples. The maximum capillary rise reached about 1300 mm, much higher than previously reported. This excellent capillary rise ability is thought to be due to the controlled pore size, pore distribution and pore orientation in these porous mullite ceramics.  相似文献   

11.
Porous mullite ceramics with an open/closed pore structure were prepared by protein foaming method combined with fly ash hollow spheres. Both the open porosity and total porosity of samples were enhanced by increasing the hollow sphere content. Mullite whiskers with a diameter of 0.2–4 μm were grown in-situ in the porous mullite ceramics with an AlF3 catalyst, conforming to a vapor-solid growth mechanism. The pore structure of the porous mullite ceramics was significantly affected by the mullite whiskers which increased the open porosity and total porosity. Moreover, the median pore size was reduced from 65.05 μm to 36.92 μm after the introduction of mullite whiskers. The flexural strength and the thermal conductivity of the samples decreased with increasing total porosity. The porosity dependence of the thermal conductivity was well described by the universal model, providing a reference for the prediction of thermal conductivity of porous ceramics with open/closed pores.  相似文献   

12.
Low-cost porous mullite ceramic membrane supports were fabricated from recycling coal fly ash with addition of natural bauxite. V2O5 and AlF3 were used as additives to cause the growth of mullite crystals with various morphologies via an in situ reaction sintering. Dynamic sintering, microstructure and phase evolution of the membrane supports were characterized in detail and open porosity, pore size, gas permeation and mechanical properties were determined. It showed the membrane support with 3 wt.% V2O5 and 4 wt.% AlF3 addition exhibits an open porosity of ∼50%, mechanical strength of 69.8 ± 7.2 MPa, an interlocking microstructure composed of anisotropically grown mullite whiskers with an aspect ratio of 18.2 ± 3.6 at 1300 °C. Addition of more V2O5 lowered the secondary mullitization temperature, resulting in more mullite formation at lower temperatures. The fabricated membrane supports feature high porosity without mechanical strength degradation, possible strengthening mechanism of the mullite whiskers was further discussed.  相似文献   

13.
Microstructural evolution and densification behavior of porous kaolin-based mullite ceramic added with MoO3 were investigated. The results indicated that MoO3 addition not only lowered the secondary mullitization temperature to below 950?°C, but also facilitated effectively the anisotropic growth of mullite grains. Fine mullite whiskers grew and interlocked with one another in the pre-existing pore regions, in-situ forming a stiff 3D skeleton structure of mullite whiskers, which arrested further densification of the sample. On the other hand, due to the great capillary attraction of small pores, the liquid phase tended to spread over small grains, which favored the growth from small mullite grains into whiskers at the expense of the liquid phase. Consequently, competitive mechanisms of sintering and crystal growth of mullite functioned, which further limited the sample densification. As a result, the total linear shrinkage of the sample added with MoO3 after firing at 1400?°C was only ??2.75%, and its porosity was retained at as high as 67%.  相似文献   

14.
Near-net-shaped hierarchical structure-adjustable short mullite fibers/mullite whiskers frameworks (MF/MW frameworks) were prepared by slurry-filtration and heat-treating method. The main structure of MF/MW framework was constituted by lap-jointed mullite fibers. Every single fiber in the framework was densely covered by mullite whiskers which formed through fluorine-catalyzed gas-phase reaction, and the fibers actually served as curved substrates for the mullite whiskers' growth. The lap-jointing points of the fibers were served by movable intersected mullite whiskers. Moreover, the microstructure of the frameworks could be adjusted by tailoring the raw materials mass ratio. The volume densities, the apparent porosities and the thermal conductivities of the MF/MW frameworks in different raw materials mass ratios were 0.459–0.487 g/cm3, 79.7–82.8% and 0.1356–0.1965 W/k m, respectively. The compression–resilience property of the samples was tested under 0.4 MPa at room temperature. The compression ratio and resilience ratio of the MF/MW frameworks in different raw materials mass ratios were 1.63–2.25% and 92.67–98.16%, respectively. The MF/MW frameworks with advanced thermal and mechanical properties were considered to be promising high-temperature heat-insulation material.  相似文献   

15.
The mullite and ytterbium disilicate (β-Yb2Si2O7) powders as starting materials for the Yb2Si2O7/mullite/SiC tri-layer coating are synthesized by a sol–gel method. The effect of SiC whiskers on the anti-oxidation properties of Yb2Si2O7/mullite/SiC tri-layer coating for C/SiC composites in the air environment is deeply studied. Results show that the formation temperature and complete transition temperature of mullite were 800–1000 and 1300°C, respectively. Yb2SiO5, α-Yb2Si2O7, and β-Yb2Si2O7 were gradually formed between 800 and 1000°C, and Yb2SiO5 and α-Yb2Si2O7 were completely transformed into β-Yb2Si2O7 at a temperature above 1200°C. The weight loss of Yb2Si2O7/(SiCw–mullite)/SiC tri-layer coating coated specimens was 0.15 × 10−3 g cm−2 after 200 h oxidation at 1400°C, which is lower than that of Yb2Si2O7/mullite/SiC tri-layer coating (2.84 × 10−3 g cm−2). The SiC whiskers in mullite middle coating can not only alleviate the coefficient of thermal expansion difference between mullite middle coating and β-Yb2Si2O7 outer coating, but also improve the self-healing performance of the mullite middle coating owing to the self-healing aluminosilicate glass phase formed by the reaction between SiO2 (oxidation of SiC whiskers) and mullite particles.  相似文献   

16.
《Ceramics International》2017,43(13):9973-9978
This paper examined experimentally and theoretically the thermal diffusibility (α), heat capacity (CP1) at a constant pressure (1 atm, 101.33 kPa) and thermal conductivity (κ=CP1α) for the porous mullite ceramics with 0–55% porosity in a wide temperature range from 298 to 1073 K. The change in the κ values with temperature or porosity for the porous mullite was similar to the temperature dependence or porosity dependence of the α values, which were greatly reduced by the air included in the pores. The κ values for the porous mullite were theoretically analyzed with two model structures of pore–dispersed mullite continuous phase system (A model) and mullite–dispersed pore continuous phase system (B model). The measured κ values at 0–23% porosity agreed well with the κ values calculated for model A structure. In the high porosity range from 33% to 55%, the measured κ values deviated from the κ curve calculated for model A structure and approached the κ value curve for model B structure with increasing porosity. The real microstructure of 30–60% porosity is equivalent to the mixed microstructure of model A and model B for the thermal conductivity measurement.  相似文献   

17.
《Ceramics International》2023,49(6):9442-9451
The increasing demand for mullite whisker-reinforced, toughened ceramic materials and mullite raw materials that meet industrial requirements has prompted the search for new and alternative sources, as well as effective technologies to obtain the target products. In this work, mullite whiskers of high purity were synthesized by a vapor-liquid–solid (V-L-S) process using industrial waste silica-alumina gel and Al2(SO4)3·18H2O as raw materials, with AlF3·3H2O and Na2SO4 as additives. The effects of sintering temperatures on the mullitization reactions and mullite morphology were investigated by XRD, TG-DTA, SEM and so forth. The results suggest that the introduction of AlF3·3H2O and Na2SO4 alters the mullitization reaction path, which leads to an initial mullitization reaction temperature of 720 °C. The SEM results demonstrate that mullite whiskers transformed from secondary growth to anisotropic growth when the sintering temperature was increased from 720 °C to 825 °C. By analyzing the experimental results, the mechanism of AlF3·3H2O-assisted growth of mullite whiskers with Na2SO4 as the liquid phase template is proposed based on the “dissolution-precipitation” process. Herein, a novel and feasible solution for the recycling of silica-rich industrial waste is proposed, which offers new and simple insights into the high value-added recycling of industrial waste, which provides new ideas for the actual mass production of mullite whiskers.  相似文献   

18.
Al2O3-mullite composites were prepared under the synergy effect of AlF3 and SiC aids by microwave heating. The phase composition, microstructure, porosity, flexural strength, thermal shock resistance, and thermal conductivity were investigated. The XRD results revealed that the content of mullite phase steadily increased with the increasing of AlF3 content. The microstructure showed that the lower content (≤1 wt%) of AlF3 led to the formation of granular mullite and the higher content (≥3 wt%) of AlF3 led to the formation of mullite whiskers, which could form an interlocking structure. In addition, the SiC hot spots can also promote the generation of mullite whiskers by microwave sintering. The thermal shock resistance was significantly improved by the interlocking structure of mullite whiskers. The residual rate of flexural strength of the composite with 3 wt% AlF3 was 86%. The composite with 3 wt% AlF3 additives got its optimized thermal conductivity from 30°C to 950°C, the value was between 0.819 and 1.021 W/(mK), which possess excellent thermal insulation performance.  相似文献   

19.
Mullite whiskers are potential candidates for improving the mechanical and thermal properties of ceramic, glass, and composite material. In this work, well‐developed whisker‐shaped mullite has been produced by adding tribasic calcium phosphate (Ca3(PO4)2) into kaolin before calcining in air. In the raw kaolin, rod‐like mullite crystal of ~0.5‐1.0 μm length and ~0.05‐0.2 μm diameter formed at 1350°C, and mullite whiskers were not be observed; however, by doping 6 wt% Ca3(PO4)2 into kaolin, mullite whiskers of ~5.5 μm length and ~0.05‐0.10 μm diameter grew at 1250°C. The formation of high aspect ratio of mullite whiskers can probably be explained by the synergistic effect of P2O5 and CaO, resulting in the formation of liquid phase with a relatively higher content of Si and a lower viscosity at low temperature of 1250°C, which facilitates the growth of mullite displaying acicular morphology. The results are of interest in producing high aspect ratio of mullite whiskers from kaolin at reduced calcination temperatures.  相似文献   

20.
Using recyclable industrial waste Si/SiC and Al2(SO4)3 as starting materials, urchin-like mullite whiskers were successfully synthesized via the molten salt method. The characterizations were focused on the phase transformations and morphology evolution of mullite whiskers. The circular oxidation-dissolution-precipitation mechanism was proposed for the growth of urchin-like mullite whiskers. Then, the pressing-sintering process was used for fabricating porous whisker-structured mullite ceramics for oil-water separation applications. Physical properties of porous ceramic, including bulk density, apparent porosity, mechanical and thermal shock resistance were measured. It was found that excessive reaction temperature could decompose the mullite, and a suitable temperature for pure urchin-like mullite whiskers was found to be 900°C. To achieve oil-water separation, bionic surface grafting technology was used for coating a hydrophobic and lipophilic material (octadecylamine, ODA) on mullite ceramic. Oil adsorption capacities of the ceramic/ODA for various oils, that is, .27 and .24 g/g for cooking and motor oil, respectively, were successfully achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号