首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
The conditions under which the transient outflow from a punctured pipeline may be approximated as that emanating from a vessel using a simplified analytically based vessel blowdown model (VBM) is investigated in this article. The above addresses the fundamental drawback of long computational run times associated with the numerically based techniques used for simulating pipeline puncture failures. The efficacy of the VBM is tested by comparison of its predictions against simulation data obtained using a validated rigorous but computationally demanding numerical technique based on the method of characteristics. The results show that the accuracy of the VBM increases with decreasing puncture/pipe diameter ratio, line pressure, and increasing pipeline length. Surprisingly, the VBM produces more accurate predictions for two‐phase mixtures when compared with permanent gases. This is found to be a consequence of the better applicability of the isothermal bulk fluid decompression assumption within the pipeline in the case of two‐phase mixtures. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
研究在一般EVA热熔胶中用聚丁烯取代20%~50%的松香酯,使胶的密度从0.975降至0.936~0.970范围,结果表明不影响热熔胶性能.但成本可下降,尤其较易在纸浆工序中清除。  相似文献   

3.
4.
Batch extractive distillation was studied in a column with a middle vessel. The process was simulated by a constant holdup model and solved by two point implicit method. Acetone and methanol mixture was separated in such a setup using water as solvent. The simulation agrees well with experimental results. The experimental and simulation results show that the solvent at the bottom and the product at the top of the column can be withdrawn simultaneously for a long period of time. It needs more time for the solvent to reach high purity than that required for the more volatile component to reach high purity, so that the time to withdraw solvent from the bottom is delayed.  相似文献   

5.
6.
7.
发明的详细说明: 本发明是关于具有耐热性能的α-氰基丙烯酸酯系胶粘剂.α-氰基丙烯酸酯系胶粘剂是非溶剂型、一液性单体型的胶粘剂,藉助于被粘物表面或空气中微量水分,很容易聚合固化形成具有较高粘接强度的胶粘剂. 但是,α-氰基丙烯酸酯聚合体属于热塑性聚合物,因而一旦受热,其粘接强度就比受热前大大降低.这就是α-氰基丙烯酸酯胶粘剂的一大缺点.  相似文献   

8.
9.
介绍由四川省化工设计院和银山公司设计室负责施工图设计的 9万吨 /年磷铵扩能为 12万吨 /年工艺的技术特点 ,采用双槽萃取—两效三体料浆浓缩—烟气加热空气制粉状磷酸一铵工艺路线。并采用了一系列新工艺、新技术 ,2 0 0 0年装置投入运行 ,经考核达到设计能力 ,最大产量达 487t/ d磷铵。最后提出需解决辅助装置能力配套问题及国产减速机大型化问题  相似文献   

10.
《Fuel》2003,82(15-17):2065-2068
The purpose of this study was to improve the desulphurization yield of a high sulphur-content semianthracite from northern Spain adapted to the process conditions of a packed-bed reactor, for which three 5-kg packed columns of coal were set up with the pH stabilized at 1.5. The process was begun by inoculating the first column with a culture obtained from micro-organisms native to the coal itself, mainly Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, grown in a stirred reactor. The percolate of this column was then used to seed the second column, the percolate of which was then inoculated into the last one. The purpose was to obtain from the last column a better adapted and more active biomass which would give a better desulphurization yield for coal. Results show an increased yield from the first column to the last over the first 20 days of treatment, but the total desulphurization in the third column was less than expected, owing to a high precipitation of jarosite.  相似文献   

11.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

12.
CFD-PBM耦合模型模拟气液鼓泡床的通用性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张华海  王铁峰 《化工学报》2019,70(2):487-495
通过对不同操作压力和不同液体性质气液鼓泡床的模拟值与实验数据进行对比,从而验证CFD-PBM耦合模型的通用性。结果表明,CFD-PBM耦合模型在加入了气泡破碎修正因子后,可以很好地预测压力对鼓泡床流体力学行为的影响趋势,当压力升高时,气含率显著升高。不同液体黏度和表面张力条件下CFD-PBM耦合模型的模拟结果与实验结果均吻合较好。随液体黏度增大,气泡破碎速率减小,气泡尺寸分布变宽,曳力显著下降,气含率随之降低。随表面张力减小,气泡破碎速率增大,气泡变小,气含率升高。CFD-PBM耦合模型具有很好的通用性,原因在于考虑了压力、液体黏度和表面张力对气泡聚并、破碎和气液相间作用力的影响。  相似文献   

13.
计算流体力学与群体平衡模型(CFD-PBM)结合可有效地模拟鼓泡塔内流体行为,较准确地预测流场、相含率以及局部气泡尺寸分布。以直径100 mm、高1.3 m的加温加压鼓泡塔为模拟对象,在系统压力为1 MPa、表观气速为0.08~0.24 m/s、温度为30~160℃条件下系统地考察了空气-水体系的表观气速、温度以及固含率对平均气含率、大小气泡气含率、气泡直径和气泡尺寸分布等参数的影响。结果表明,平均气含率的模拟结果和实验值在10%的误差范围内吻合较好;温度的变化主要影响了塔内气泡的聚并和破碎,并用聚并破碎的机理解释了温度对其流体行为的影响。  相似文献   

14.
通过二维和三维CFD-PBM耦合模型对空气-醋酸体系中流体力学参数进行数值模拟,采用表面张力修正曳力模型与聚并模型,考察了醋酸浓度对鼓泡塔内气含率、气泡大小分布及轴向液速等参数的影响,与差压法、光纤探针和电阻层析成像技术(ERT)测量的实验数据进行了对比,并讨论分析了气含率和气泡直径等流体力学参数的模拟结果。结果表明,醋酸浓度在70%~80%(质量分数)范围内平均气含率存在最大值,且平均气含率的预测值在±10%误差内,三维模拟结果和ERT实验值吻合较好,说明修正后的模型在不同浓度醋酸体系中具有较好的预测性。  相似文献   

15.
The results are reported of an experimental study of the gas holdup, ?G, large bubble diameter, dLb, and large bubble rise velocity, VLb, in a 0.1 m wide, 0.02 m deep and 0.95 m high rectangular slurry bubble column operated at ambient temperature and pressure conditions. The superficial gas velocity U was varied in the range of 0–0.2 m/s, spanning both the homogeneous and heterogeneous flow regimes. Air was used as the gas phase. The liquid phase used was C9‐C11 paraffin oil containing varying volume fractions (?S = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) of porous catalyst (alumina catalyst support, 10 % < 10 μm; 50 % < 16 μm; 90 % < 39 μm). With increasing slurry concentrations, ?G is significantly reduced due to enhanced bubble coalescence and for high slurry concentrations the “small” bubbles are significantly reduced in number. By the use of video imaging techniques, it was shown that the large bubble diameter is practically independent of the gas velocity for ?S > 0.05 and U > 0.1 m/s. The measured large bubble rise velocity VLb agrees with the predictions of a modified Davis‐Taylor relationship.  相似文献   

16.
17.
A pressure balanced bubble-growth (PBB) model was proposed to analyze bubble coalescence and determine the bubble radius for the melt foaming of long-chain branched poly(ethylene terephthalate) (LCB-PET). The key for the PBB model calculation was to determine the bubble inner pressure composed of additional pressure induced by interface tension, and molecular stress, that is, the biaxial tensile stress of the polymer cell wall calculated with the molecular stress function model. LCB-PET was generated by reactive extrusion, and the molecular structure and viscoelasticity were well characterized. Batch melt-foaming experiments with CO2 were conducted for the LCB-PET. The critical coalescence radius curve was calculated with the PBB model to dynamically describe the bubble coalescence and evaluate the melt foamability. The PBB model was also used to determine the bubble size of LCB-PET foam. Both the evaluation of the melt-foamability and the determination of the bubble radius agreed well the experimental results.  相似文献   

18.
王珏  杨宁 《化工学报》2017,68(7):2667-2677
能量最小多尺度(energy-minimization multi-scale,EMMS)方法已经被应用于气液体系中群平衡(population balance model,PBM)模型的改进。EMMS模型可计算气泡破碎聚并过程的能量,进而获得聚并速率的修正因子。应用这一模型对高气速鼓泡塔进行了模拟计算,并进一步对比了均一尺径模型、CFD-PBM模型以及CFD-PBM-EMMS模型的模拟结果与实验数据。结果表明,在高表观气速条件下,基于EMMS方法的群平衡模型可以更加准确地预测鼓泡塔中不同高度的气泡尺径分布和轴向液速,同时提高了对整体气含率和局部气含率的模拟准确性。在表观气速为0.16 m·s-1和0.25 m·s-1时,CFD-PBM-EMMS模型对气泡尺径分布的预测精度更高,同时整体气含率模拟的相对误差下降为5%和15%,局部气含率模拟平均相对误差下降为8%和17%。  相似文献   

19.
Gas holdup in a semi-batch operated slurry (pulp fibre suspension) bubble column was investigated for two pulp types (softwood and hardwood kraft pulps) over a range of suspension mass concentrations (Cm=0–9% by mass) and superficial gas velocities (Ug=0.0027–0.027 m/s). Three techniques were used: height difference between gassed and ungassed operation; pressure difference as a function column height; and electrical resistance tomography (ERT). Depending on the technique used the average, axial and radial holdup profiles could be determined. In the pulp suspensions, the ERT determined gas holdups correlated well with those determined using the differential height method. In water, the ERT determined gas holdups were significantly lower, but the agreement was significantly improved by increasing the background conductivity by adding 1 g/L salt to the water. This, however, reduced the overall gas holdup due to the effect of the electrolyte on bubble coalescence. Other differences between the three measurement techniques were attributed to limitations in the detection methods and the averaging procedures used to compare results.The presence of pulp fibres reduced gas-holdup at all gas flow rates and suspension concentrations studied and is attributed to increased bubble coalescence which increases bubble size and consequently bubble rise velocity through the suspension. Gas holdup (as determined by ERT) increased with column height. The radial gas profiles were non-uniform and more peaked than the corresponding water profiles. At low suspension concentrations this was attributed to asymmetric suspension recirculation within the column. As suspension concentration increased, channels formed in the suspension with the average void fraction leveling off to a plateau.  相似文献   

20.
Numerical simulations of the bubbly flow in two square cross-sectioned bubble columns were conducted with the commercial CFD package CFX-4.4. The effect of the model constant used in the sub-grid scale (SGS) model, CS, as well as the interfacial closures for the drag, lift and virtual mass forces were investigated. Furthermore, the performance of three models [Pfleger, D., Becker, S., 2001. Modeling and simulation of the dynamic flow behavior in a bubble column. Chemical Engineering Science, 56, 1737-1747; Sato, Y., Sekoguchi, K.,1975. Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow 2, 79-95; Troshko, A.A., Hassan, Y.A., 2001. A two-equation turbulence model of turbulent bubbly flows. International Journal of Multiphase Flow 27, 1965-2000] to account for the bubble-induced turbulence in the k-ε model was assessed. All simulation results were compared with experimental data for the mean and fluctuating liquid and gas velocities. It is shown that the simulation results with CS=0.08 and 0.10 agree well with the measurements. When CS is increased, the effective viscosity increases and subsequently the bubble plume becomes less dynamic. All three bubble-induced turbulence models could produce good solutions for the time-averaged velocity. The models of Troshko and Hassan and Pfleger and Becker reproduce the dynamics of the bubbly flow in a more accurate way than the model of Sato and Sekoguchi. Based on the comparison of the results obtained for two columns with different aspect ratio (H/D=3 and H/D=6), it was found that the model of Pfleger and Becker performs better than the model of Troshko and Hassan, while the model of Sato and Sekoguchi performs the worst. It was observed that the interfacial closure model proposed by Tomiyama [2004. Drag, lift and virtual mass forces acting on a single bubble. Third International Symposium on Two-Phase Flow Modeling and Experimentation, Pisa, Italy, 22-24 September] performs better for the taller column. With the drag coefficient proposed by Tomiyama, the predicted slip velocity agrees well with the experimental data in both columns. The virtual mass force has a small influence on the investigated bubbly flow characteristics. However, the lift force strongly influences the bubble plume dynamics and consequently determines the shape of the vertical velocity profile. In a taller column, the lift coefficient following from the model of Tomiyama produces the best results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号