首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning electron microscopy (SEM) study of the morphologic change of high‐density polyethylene (HDPE) surface grafted with glycidyl methacrylate (GMA) was reported. Radiation‐induced grafting of GMA onto HDPE was carried out in acetone and dichloromethane solution, respectively. The effects of irradiation dose, atmosphere, and swelling time on grafting were investigated. Generally, the extent of grafting increased with irradiation dose, but for the grafting carried out in acetone solution, the extent of grafting initially increased with irradiation dose and then remained almost constant. The extent of grafting was higher in acetone solution than in dichloromethane solution at the same irradiation dose. The extent of grafting in nitrogen was higher than that in air. The successful grafting of GMA onto HDPE was confirmed by weighing and FTIR analysis. SEM investigations showed that the morphologies of the PE samples grafted in acetone solution were quite different to those grafted in dichloromethane. The grafting of GMA carried out in acetone was mainly on HDPE surface and that carried out in dichloromethane was mainly in the bulk of HDPE. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The γ‐radiation‐induced grafting of 1,2,2,6,6‐pentamethyl‐4‐piperidinyl methacrylate (PMPM) onto polypropylene (PP) was investigated with a simultaneous irradiation technique. The effects of the solvent, dose, monomer concentration, and photoinitiator on the grafting were investigated. The grafting was easier in a benzene solution than in chloroform and acetone solutions. The grafting percentage first increased almost linearly with the irradiation dose until 20 kGy and then increased slowly or remained constant. The grafting percentage increased with the monomer concentration until 1.1 mol/L. The grafting percentage was higher when the proper amount of benzophenone was added. The grafted samples were characterized with Fourier transform infrared spectroscopy and thermogravimetric analysis. Carbonyl groups were found on grafted PP samples, and the carbonyl index increased with the grafting percentage. Thermogravimetric analyses proved the existence of grafted materials on PP, and grafted PMPM thermally decomposed at a lower temperature than PP. The radiation resistance of PP with grafted PMPM was better than that of pristine PP. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2157–2164, 2005  相似文献   

3.
This article presents an atomic force microscopy (AFM) study of the initial stage of the photografting of glycidyl methacrylate (GMA) onto high-density polyethylene (HDPE) surface and the microstructure of the grafted chains. The grafting was carried out in acetone, dichloromethane and tetrahydrofuran (THF), as well as without solvent. Granular structures were found on the surface of the samples grafted in the solvents. The height of the granules increased linearly with their diameter. Each granule was thought to be a single grafted chain with a highly branched (or superbranched) microstructure. The grafting density on HDPE was quite small when the grafting was carried out in the solvents. The grafted chains were more branched when grafting was carried out in THF than when the grafting was carried out in acetone and dichloromethane. The bulk (no solvent) grafting of GMA onto HDPE was much faster and more uniform than that carried out in the solvents. The thickness of the bulk grafted materials was a few nanometers after 30 s irradiation, and possibly, the grafting density was much higher and the grafted polymers were much less branched than those produced in solvent.  相似文献   

4.
The melt grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE) in the presence of free radical initiators was investigated in the batch mixer. The graft content was determined with the titration and FTIR spectroscopy. The graft content increased with the increase of peroxide and initially introduced GMA concentration. Increase of the grafted GMA content resulted in decrease of the melt index. Interestingly, there was a sudden drop of GMA grafting content with the reaction time. It is assumed that depolymerization of GMA have taken place over the ceiling temperature. The crystallinity of the prepared glycidyl methacrylate grafted high density polyethylene (HDPE‐g‐GMA) was determined by the measurement of the heat of fusion. GMA grafted site acted as defect and crystallinity of the HDPE‐g‐GMA decreased with the increase of grafting reaction. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The photolamination of high‐density polyethylene (HDPE) by bulk photografting is described, along with a discussion of the adhesion mechanism. HDPE can be photolaminated very easily with a thin poly(acrylic acid) layer, photopolymerized from acrylic acid, with very strong adhesion obtained after a short time of UV irradiation; the adhesion failure mode is polyethylene breakage. Thicker HDPE sheets require longer irradiation times for strong adhesion. Methacrylic acid or hydroxyethyl methacrylate provides no adhesion of HDPE at all after irradiation. When glycidyl acrylate is used alone between HDPE sheets, the peel strength of the photolaminated polyethylene is only approximately 320 N/m, but when glycidyl acrylate or hydroxyethyl methacrylate is grafted with acrylic acid, very good adhesion can be obtained. It is proposed that stronger adhesion is produced by a less branched grafted chain structure, which permits much more chain entanglement. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1097–1106, 2005  相似文献   

6.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

7.
The reactive compatibilization of blends of HDPE–PET [high‐density polyethylene–poly(ethylene terephthalate)] was investigated in this study. The compatibilizers used were two grafted copolymers prepared by reactive extrusion containing 1.20–2.30 wt % GMA such as HDPE‐g‐GMA and one statistical copolymer containing 1 wt % GMA such as Lotader AX8920. HDPE was successfully functionalized using a melt free‐radical grafting technique. Grafting was initiated in two ways: adding an initiator in the polymer–monomer mixture or activation by ozone of polymer. Ozonization of HDPE by the introduction of a peroxide lead to a better grafting yield and to better grafting efficiency of the samples. The effects of the three compatibilizers were evaluated by studying the morphology and the thermal and mechanical properties of HDPE–PET (70/30 wt %) blends. Significant improvements were observed, especially in morphology, elongation at break, and Charpy impact strength of the compatibilized blends. A more pronounced compatibilizing effect was obtained with the statistical copolymer, for which the elongation at break and the impact strength were increased by 100%, while the uncompatibilized blends showed a 60% decrease in the Young's modulus and the strength at break. We also were able to show that the grafting yield increase of 1.20–2.30 wt % of GMA did not affect the properties of the blends because the grafted copolymers possess very similar chemical structures. However, compatibilization of blends with grafted copolymers is an interesting method, particularly for recycled blends, because the synthesis of these compatibilizers is easy and cheap in comparison to statistical copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2377–2386, 2001  相似文献   

8.
:This study concerns the melt‐free radical grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE). We studied the effect of two initiators (tert‐butyl cumyl peroxide and di‐tert‐butyl peroxide) onto HDPE. Crosslinking of polymer was observed in the presence of 0.3 wt % tert‐butyl cumyl peroxide but not with 0.3 wt % di‐tert‐butyl peroxide. The grafting was carried out in a Brabender batch mixer at 190 °C. The grafting yield of GMA onto HDPE (determined by infrared spectrometry) is weak (<1 wt % for an initial concentration in monomer of 6 wt %). Moreover, it was noted that the degree of grafting did not vary with the concentration and the nature of peroxide used. To increase the grafting yield of GMA, we added to the HDPE/peroxide/GMA system an electron‐donating monomer, such as styrene. Adding this comonomer multiplied the rate of grafted GMA 3‐ or 4‐fold, resulting in a ratio [styrene]i/[GMA]i = 1 mol/mol with [GMA]i = 6 wt %. So, the copolymerization is favored compared with the homopolymerization. This kind of copolymer presenting reactive functions is very attractive in the field of compatibilizing immiscible polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 581–590, 2001  相似文献   

9.
《The Journal of Adhesion》2013,89(10):955-971

A study has been made on the effect of the presence of grafted acrylic layers on the autoadhesion of polyethylene. Methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA), and butyl methacrylate (BMA) were grafted onto high density polyethylene (HDPE). The grafting reaction was faster at higher temperature and methacrylates graft more easily than acrylates. For methacrylates and acrylates, the grafted amount increases with increasing length of the pendant alkyl chain. The grafting temperature is a crucial factor affecting the adhesion of grafted PE samples. For the samples grafted at lower temperature (in a room temperature water bath), the adhesion is very low (less than 50 N/m), even for very thick grafted layers. But for the samples grafted at higher temperature, much higher adhesion can be obtained. The presence of homopolymer was another factor affecting the adhesion of PE samples. When homopolymer is removed from the surface of the grafted sample, higher adhesion can be obtained. For some samples, the highest peel strength of more than 1000 N/m has been obtained. The low adhesion of the samples grafted at low temperature is attributed to the high branching of grafted chains.  相似文献   

10.
Free‐radical melt‐grafting of the dual‐monomer systems glycidyl methacrylate–styrene (GMA‐St) and hydroxyethyl methacrylate–styrene (HEMA‐St) onto polypropylene (PP) has been studied using a single‐screw extruder. For single monomer grafting systems, degradation of PP was unavoidable and deterioration of the mechanical properties of the grafted PP subsequently occurred because of β‐scission of PP chains during the free‐radical melt‐grafting process. However, for the dual‐monomer systems, it is shown that the addition of styrene as a comonomer can significantly enhance the GMA or HEMA grafting levels on PP and reduce the extent of β‐scission of PP backbone. It has been found that the grafting degree of dual‐monomer melt‐grafted PP, such as PP‐g‐(GMA‐co‐St) or PP‐g‐(HEMA‐co‐St), is about quadruple that of single‐monomer grafted PP for the same monomer and dicumyl peroxide concentrations. Moreover, the melt flow rate of the dual‐monomer grafted PP is smaller than that of the unmodified PP. Hence, PP not only was endowed with higher polarity, but also kept its good mechanical properties. © 2000 Society of Chemical Industry  相似文献   

11.
A study has been made on the effect of the presence of grafted acrylic layers on the autoadhesion of polyethylene. Methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA), and butyl methacrylate (BMA) were grafted onto high density polyethylene (HDPE). The grafting reaction was faster at higher temperature and methacrylates graft more easily than acrylates. For methacrylates and acrylates, the grafted amount increases with increasing length of the pendant alkyl chain. The grafting temperature is a crucial factor affecting the adhesion of grafted PE samples. For the samples grafted at lower temperature (in a room temperature water bath), the adhesion is very low (less than 50 N/m), even for very thick grafted layers. But for the samples grafted at higher temperature, much higher adhesion can be obtained. The presence of homopolymer was another factor affecting the adhesion of PE samples. When homopolymer is removed from the surface of the grafted sample, higher adhesion can be obtained. For some samples, the highest peel strength of more than 1000 N/m has been obtained. The low adhesion of the samples grafted at low temperature is attributed to the high branching of grafted chains.  相似文献   

12.
引 言在过去 2 0年中 ,聚乙烯 (PE)的辐射接枝被广泛研究 ,主要集中在对聚乙烯膜或片体在溶液中的接枝研究 ,而有关聚乙烯粉末固相辐射接枝的研究却很少[1] .实际上 ,辐射接枝在高分子材料改性领域存在优势 ,尤其是在固态粉末体系中 ,辐射接枝比表面高、单体利用率高、均聚合可降至最低甚至消除、接枝产物在与聚合物共混时的相容性改善等[2 ] .通过辐射接枝可以制备选择性渗透膜、医用高分子材料和高分子吸着剂 ,此外还可引入极性基团增强聚合物的黏结力或附着力[1,3 ] .本文研究了粉末态高密聚乙烯的辐射效应、与多种单体的固态辐射接枝…  相似文献   

13.
In this article, high density polyethylene/styrene‐ethylene‐butylene‐styrene block copolymer blends (HDPE/SEBS) grafted by maleic anhydride (HDPE/SEBS‐g‐MAH), which is an effective compatibilizer for HDPE/wood flour composites was prepared by means of torque rheometer with different contents of maleic anhydride (MAH). The experimental results indicated that MAH indeed grafted on HDPE/SEBS by FTIR analysis and the torque increased with increasing the content of maleic anhydride and dicumyl peroxide (DCP). Styrene may increase the graft reaction rate of MAH and HDPE/SEBS. When HDPE/SEBS MAH was added to HDPE/wood flour composites, tensile strength and flexural strength of composites can reach 25.9 and 34.8 MPa in comparison of 16.5 and 23.8 MPa (without HDPE/SEBS‐g‐MAH), increasing by 157 and 146%, respectively. Due to incorporation of thermoplastic elastomer in HDPE/SEBS‐g‐MAH, the Notched Izod impact strength reached 5.08 kJ m?2, increasing by 145% in comparison of system without compatibilizer. That HDPE/SEBS‐g‐MAH improved the compatibility was also conformed by dynamic mechanical measurement. Scanning electron micrographs provided evidence for strong adhesion between wood flour and HDPE matrix with addition of HDPE/SEBS‐g‐MAH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
To improve the compatibility and properties of blends based on high‐density polyethylene (HDPE) and the ethylene–propylene copolymer (EPR), the functionalization of both through grafting with an itaconic acid derivative, monomethyl itaconate (MMI), was investigated. The grafting reaction was performed at 180°C in a Brabender Plasticorder using an initial monomer concentration of 3 phr in the case of HDPE and 5 phr in the case of EPR. 2,5‐Dimethyl‐2,5‐bis(tert‐butylperoxy)hexane was used as a radical initiator for the functionalization of HDPE and dicumyl peroxide was used as a radical initiator for the modification of EPR. The degree of grafting was 1.56% by weight for HDPE and 0.8% by weight for EPR. The effect of grafting on the processability, morphology, and thermal and mechanical properties of the blends are of particular interest. The results show that the grafting reaction increases the toughness and elongation at break of all tested blends and they retained their strength and stiffness. Moreover, the grafted polymers behaved as nucleating agents, accelerating the HDPE crystallization. These results are particularly relevant when both polymeric phases are modified. Morphological studies are in concordance with the mechanical characterization, showing a reduction of the rubber particle size and a better interfacial adhesion when both polymers are functionalized with MMI. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2239–2248, 2003  相似文献   

15.
Modification of poly(tetrafluoroethylene‐co‐ethylene), Tefzel (ETFE), film has been carried out by grafting methylmethacrylate (MMA) by radiation method including preirradiation and double‐irradiation methods. Percentage of grafting has been determined as a function of the (i) total dose, (ii) monomer concentration, (iii) amount of liquor ratio, (iv) reaction time, and (v) temperature.The effect of different alcohols such as methanol, ethanol, 2‐propanol, n‐butanol, n‐pentanol, and 2‐ethoxy ethanol on percentage of grafting of MMA was also studied. The graft copolymers were characterized by IR spectroscopy and thermogravimetric analysis (TGA). Methylmethacrylate produces higher percentage of grafting by preirradiaton method than double‐irradiation method. MMA‐grafted ETFE films (Sirr), i.e., prepared by preirradiation involving single irradiation show better thermal stability than MMA‐grafted ETFE films (Dirr), i.e., prepared by double irradiation and unmodified ETFE film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Blood filtration requires a high removal ratio of leukocytes and with simultaneous high recovery ratio of platelets and other beneficial components. Problems are often encountered with blood filter materials in terms of high platelet loss. Zwitterions such as phosphorylcholine, sulfobetaine and carboxybetaine show effective resistance against protein adsorption and platelet adhesion. The study reported was aimed at achieving surface modification of poly(butylene terephthalate) non‐woven fabric (PBTNF) using UV radiation‐induced graft copolymerization of a zwitterionic sulfobetaine, N‐(3‐sulfopropyl)‐N‐methacroyloxyethyl‐N,N‐dimethylammonium betaine (SMDB), in order to improve the wettability and platelet recovery ratio of the PBTNF. Attenuated total reflection Fourier transform infrared and X‐ray photoelectron spectroscopy results showed that SMDB was successfully grafted onto the PBTNF. Photoinitiator concentration, monomer concentration and UV irradiation time affected markedly the degree of grafting. Critical wetting surface tension, water wetting time and hemolysis tests showed an improvement in wettability and blood compatibility as a result of graft copolymerization of SMDB. A blood filter material composed of SMDB‐modified PBTNF reduced platelet adhesion and had higher platelet recovery compared to poly(acrylic acid)‐modified PBTNF. It was found that SMDB monomer was successfully grafted onto PBTNF using UV radiation. The degree of grafting of SMDB could be controlled by varying the photoinitiator concentration, monomer concentration and UV irradiation time. SMDB‐modified PBTNF showed significant improvement in wettability and blood compatibility. The zwitterionic structure of SMDB is resistant to platelet adhesion. The SMDB‐modified PBTNF could be a candidate for a blood filter material and in other medical applications. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
The photografting of a water‐insoluble monomer methyl methacrylate (MMA) onto high‐density polyethylene (HDPE) initiated by an aliphatic ketone/water/alcohol initiating system has been reported. The aliphatic ketones, such as acetone, butanone, and cyclohexanone, could effectively initiate the grafting reaction when they were mixed with water and ethanol to form homogeneous aliphatic ketone/water/ethanol mixed solvents that could dissolve the water‐insoluble monomer. The nature of aliphatic ketone affected the grafting; at the same aliphatic ketone/water/ethanol volume ratio, the grafting system containing acetone or butanone always led to a higher extent of grafting than that containing cyclohexanone. Water also played a very important role in the grafting reaction; in the tested range, the rate of formation of grafted PMMA on HDPE increased with the increase of water : volume ratio. The grafting of MMA carried out in 5 acetone/40 water/55 ethanol mixed solvent led to the highest extent of grafting. ATR‐FTIR characterizations of the grafted samples proved the successful grafting of MMA onto HDPE. SEM investigations of the HDPE surfaces grafted in different aliphatic ketone/water/ethanol mixed solvents indicate the morphologies of grafted surfaces varied with the mixed solvents used. This study broadened the application fields of the aliphatic ketone/water/alcohol initiating system for photografting. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The melt‐free radical grafting of glycidyl methacrylate (GMA) onto powered isotactic poly(1‐butene) (iPB‐1) using styrene (St) as a comonomer in a Haake mixer was studied. The effects of temperature, initial GMA, and peroxide concentration, as well as the addition of St comonomer, on the final grafting degree, grafting efficiency, and the melt flow rate of grafted polymer were studied. It was shown that the addition of St as a comonomer could significantly enhance the grafting degree of GMA on iPB‐1 and reduce the extent of degradation of iPB‐1 to some degree. It has been found that the grafting degree of dual‐monomer melt‐grafted iPB‐1 was about twice that of single‐monomer‐grafted iPB‐1 for the same monomer and peroxide concentrations. The grafting of GMA onto iPB‐1 remarkably accelerated the crystal form II → I transformation of iPB‐1. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

19.
Poly(vinylbenzyltrimethylammonium chloride)‐graft‐cotton cellulose, an anion‐exchange matrix, was synthesized by a mutual radiation‐induced grafting technique with a 60Co γ‐radiation source. The grafted matrix was characterized by grafting yield estimation, elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The grafting yield decreased with the increase in the dose rate. However, the grafting yield and nitrogen content of grafted samples increased almost linearly with an increase in the total irradiation dose. To evaluate the performance of the grafted anion‐exchange matrix, the protein adsorption and elution behavior were investigated in a continuous column process under various experimental conditions, with bovine serum albumin used as a model protein. The binding and elution behavior of the anion‐exchange matrix depended on different experimental parameters, such as the grafting yield, ionic strength, pH of the medium, and amount of protein loaded. From a breakthrough curve, the equilibrium binding capacity and elution percentage of the grafted anion‐exchange matrix were estimated to be 40 mg/g and 94%, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5512–5521, 2006  相似文献   

20.
In this study, the free‐radical grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE) in the presence of styrene, as a comonomer, is investigated using a Brabender internal mixer. To optimize grafting level of GMA onto HDPE, response surface method (RSM) was exploited. Using RSM method of experimental design, it was possible to investigate the individual effects of various variables including dicumyl peroxide (DCP) concentration, GMA content, as well as reaction time, and their interactions on grafting efficiency. The fitted quadratic model obtained from statistical analysis is expressed by an approximating function to investigate the final torque as a responding variable over the experimental range of the independent variables. The grafting yield of GMA onto HDPE for the prepared samples was determined using titration/back‐titration technique and Fourier transform infrared spectroscopy (FTIR). According to the torque–time diagrams, increasing the DCP content led to an increase in GMA grafting yield. Also, it was found that the reaction time imparts minor effect on the final processing torque, and there exists an interaction between DCP and GMA content. The results of melt flow index (MFI) test showed that increasing the reaction time at constant DCP and GMA content enhances the MFI values of the samples, due to the more probability of chain scission phenomenon. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号