首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis, characterization, and thermal properties of copolymers of methyl methacrylate (MMA) and N‐(p‐carboxyphenyl) methacrylamide/acrylamide (CPMA/CPA) are described. The copolymerization was carried out in solution by taking different mole fractions (0.1–0.5) of CPMA/CPA in the initial feed using azobisisobutyronitrile as an initiator and dimethylformamide as a solvent at 60°C. The copolymer composition was determined from 1H‐NMR spectra by taking the ratio of the proton resonance signal due to the  OCH3 of MMA (δ = 3.59 ppm) and the aromatic protons (δ = 7.6–7.8 ppm) of CPMA/CPA. The monomer reactivity ratios of MMA:CPMA and MMA:CPA were determined using the Fineman Ross and Kelen Tudos methods and were found to be 1.32 ± 0.01 [MMA], 1.11 ± 0.02 [CPMA], 2.60 ± 0.01 [MMA], and 0.20 ± 0.01 [CPA]. Incorporation of these comonomers in the MMA backbone resulted in an improvement in the glass‐transition temperature and thermal stability. The percent char also increased with the increase of CPMA/CPA content in the copolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 259–267, 2000  相似文献   

2.
Glycidyl methacrylate (GMA) and methyl methacrylate (MMA) copolymers were synthesized by atom transfer radical polymerization (ATRP). The effect of different molar fractions of GMA, ranging from 0.28 to 1.0, on the polymer polydispersity index (weight‐average molecular weight/number‐average molecular weight) as the indicator of a controlled process was investigated at 70°C, with ethyl 2‐bromoisobutyrate as an initiator and 4,4′‐dinonyl‐2,2′‐bipyridyne (dNbpy)/CuBr as a catalyst system in anisole. The monomer reactivity ratios (r values) were obtained by the application of the conventional linearization Fineman–Ross method (rGMA = 1.24 ± 0.02 and rMMA = 0.85 ± 0.03) and by the Mayo–Lewis method (rGMA = 1.19 ± 0.04 and rMMA = 0.86 ± 0.03). The molecular weights and polydispersities of the copolymers exhibited a linear increase with GMA content. The copolymer compositions were determined by 1H‐NMR and showed a domination of syndiotactic structures. The glass‐transition temperatures (Tg) of the copolymers analyzed by differential scanning calorimetry (DSC) decreased in the range 105–65°C with increasing GMA units. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Np‐Bromophenylmaleimide (BrPMI) does not polymerize in solution by conventional free radical mechanism. However, it readily polymerized in bulk when mixed with a free radical initiator and heated in a microwave oven for 7–8 min. Copolymerization of ethyl methacrylate or butyl methacrylate with BrPMI was conducted in dioxane. The copolymers were characterized by IR and 1H NMR spectroscopy and gel permeation chromatography. The monomer reactivity ratios were calculated by a non‐linear least‐square analysis. Thermal analysis indicated a great improvement in thermal stability of the copolymers compared with the methacrylate homopolymers. BrPMI was also polymerized in bulk in the DSC pan, which allowed the calculation of the activation energy of its polymerization. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
The free‐radical copolymerization of 2‐metil‐1‐{[(1‐{4‐[(4‐nitrobenzil)oksi]fenil}etilidene)amino]oksi}prop‐2‐en‐1‐on (NBOEMA) with methyl methacrylate (MMA) was carried out in 1,4‐dioxane at 65 ± 1°C. The copolymers were analyzed by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, and gel permeation chromatography (GPC). Elemental analysis was used to determine the molar fractions of NBOEMA and MMA in the copolymers and for the characterization of the compounds. The monomer reactivity ratios were calculated according to the general copolymerization equation with the Kelen–Tudos and Fineman–Ross linearization methods. The polydispersity indices of the polymers, determined with GPC, suggested a strong tendency for chain termination by disproportionation. The thermal behaviors of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The glass‐transition temperature of the copolymers increased with increasing NBOEMA content in the copolymers. Also, the apparent thermal decomposition activation energies were calculated by the Ozawa method with a Shimadzu TGA 60H thermogravimetric analysis thermobalance. All of the products showed moderate activity against different strains of bacteria and fungi. The photochemical properties of the polymers were investigated by UV spectroscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
2‐Hydroxyethyl methacrylate was copolymerized with acrylamide, N‐vinyl‐2‐pyrrolidone, and n‐butyl methacrylate by free‐radical solution polymerization with α,α′‐azobisisobutyronitrile as an initiator at 70 ± 1°C. The average molecular weights and molar compositions of the resultant copolymers were determined with gel permeation chromatography and 1H‐NMR spectroscopy data, respectively. Diclofenac or 2‐[(2,6‐dichlorophenyl)amino]benzene acetic acid, a nonsteroidal anti‐inflammatory drug, was chemically attached to the copolymers by transesterification reaction in the presence of N,N′‐dicyclohexylcarbodiimide to give macromolecular prodrugs. All the synthesized polymers were characterized with Fourier transform infrared, 1H‐, and 13C‐NMR spectroscopy techniques. The polymer–drug conjugates were hydrolyzed in cellophane member dialysis bags containing aqueous buffered solutions (pH 8) at 37°C, and the hydrolysis solutions were detected by UV spectrophotometer at selected intervals. The results showed that the drug could be released by selective hydrolysis of the ester bond from the side chain of the drug moiety. The release profiles of the drug indicated that the hydrolytic behavior of polymeric prodrugs strongly depends on the hydrophilicity of the polymer. The results suggest that the synthesized copolymers could be useful carriers for the release of diclofenac in controlled‐release systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2403–2409, 2007  相似文献   

6.
The copolymers containing N‐vinyl‐2‐pyrrolidone (V) and methyl methacrylate (M) units of different compositions were synthesized by free radical bulk polymerization. The copolymer composition of these copolymers was determined by CHN analysis. The distortionless enhancement by polarization transfer (DEPT) technique was used to resolve the methine, methylene, and methyl resonance signals in the V/M copolymer. Comonomer reactivity ratios were determined by the Kelen–Tudos (KT) and nonlinear least‐square error‐in‐variable (EVM) methods. 1H–13C Heteronuclear shift quantum correlation spectroscopy (HSQC) and 1H–1H homonuclear total correlation spectroscopy (TOCSY) spectra were used for the resolution of the proton nuclear magnetic resonance (1H NMR) spectrum of the V/M copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1328–1336, 2002  相似文献   

7.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Copolyperoxides of 2-(acetoacetoxy)ethyl methacrylate (AEMA) with styrene (St) and methyl methacrylate (MMA) of different compositions have been synthesized in the presence of 2,2′-azobisisobutyronitrile as a free radical initiator under 100 psi oxygen pressure at 50 °C. The rates of oxidative copolymerization reactions are determined from the oxygen consumption (Δp) against time plot. Highly exothermic thermal degradations of these copolyperoxides are studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) and degradation products have been characterised by electron-impact mass spectroscopy (EI-MS). The NMR spectroscopy and EI-MS analysis confirm the alternating peroxy bonds in the main chain. The monomer reactivity ratios are computed by the Fineman–Ross and Kelen–Tüdös methods, using compositions obtained from 1H and 13C NMR analysis. These copolymers can potentially be used as polymeric initiators for the radical polymerization of vinyl monomers, autocombustible fuel. Also, the β-carbonyl moieties along the side chain of the copolyperoxides can be utilized to prepare degradable polyperoxide–metal complexes.  相似文献   

9.
A novel amine methacrylate monomer trimethylolpropane trimethacrylate–piperazine–ethyleneglycol dimethacrylate (TMPTMA‐PPZ‐EGDMA) was synthesized by amination of trimethylolpropane trimethacrylate (TMPTMA) with excess of piperazine (PPZ) followed by reaction with ethyleneglycol dimethacrylate (EGDMA). Copolymerization of TMPTMA‐PPZ‐EGDMA with 2‐hydroxyethyl methacrylate (HEMA) was carried out by free radical polymerization using ammonium persulfate (APS) and N,N,N′,N′‐tetramethyl ethylenediamine (TEMED) as a redox initiator. The copolymers obtained were then quaternized with 1‐iodooctane. The monomers were characterized by FTIR and 1H NMR spectral studies. The molecular weights and polydispersity values of the monomers were determined with gel permeation chromatography. Quaternized copolymers containing more than 20% amine methacrylate monomer showed microporosity in the range of 9.9–10.4 μm. The antibacterial activity of the quaternized copolymers against Escherichia coli and Staphylococcus aureus was studied using UV–vis spectrophotometer and scanning electron microscopy. Quaternized copolymers showed broad‐spectrum contact‐killing antibacterial properties without releasing any active agent as checked by iodide selective ion meter. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Poly{[(N,N‐(dimethylamino)ethyl methacrylate]‐co‐(methyl methacrylate)} copolymers of various compositions were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization at 70 °C in N,N‐dimethylformamide. The polymer molecular weights and molecular weight distributions were obtained from size exclusion chromatography, and they indicated the controlled nature of the RAFT polymerizations; the polydispersity indices are in the range 1.1–1.3. The reactivity ratios of N,N‐(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) (rDMAEMA = 0.925 and rMMA = 0.854) were computed by the extended Kelen–Tüdös method at high conversions, using compositions obtained from 1H NMR. The pH‐ and temperature‐sensitive behaviour were studied in aqueous solution to confirm dual responsiveness of these copolymers. The thermal properties of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The kinetics of thermal degradation were determined by Friedmann and Chang techniques to evaluate various parameters such as the activation energy, the order and the frequency factor. © 2012 Society of Chemical Industry  相似文献   

11.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

12.
Free‐radical copolymerization of 4‐nitrophenyl acrylate (NPA) with n‐butyl methacrylate (BMA) was carried out using benzoyl peroxide as an initiator. Seven different mole ratios of NPA and BMA were chosen for this study. The copolymers were characterized by IR, 1H‐NMR, and 13C‐NMR spectral studies. The molecular weights of the copolymers were determined by gel permeation chromatography and the weight‐average (M w) and the number‐average (M n) molecular weights of these systems lie in the range of 4.3–5.3 × 104 and 2.6–3.0 × 104, respectively. The reactivity ratios of the monomers in the copolymer were evaluated by Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos methods. The product of r1, r2 lies in the range of 0.734–0.800, which suggests a random arrangement of monomers in the copolymer chain. Thermal decomposition of the polymers occurred in two stages in the temperature range of 165–505°C and the glass transition temperature (Tg) of one of the systems was 97.2°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1817–1824, 2003  相似文献   

13.
Glycidyl methacrylate (GMA) was grafted onto natural rubber (NR) using emulsion polymerization method. The structures of copolymers were characterized by 1H nuclear magnetic resonance (1H‐NMR), solid state 13C‐NMR spectroscopy, and Fourier transform infrared spectrometer (FTIR). The %grafting obtained from the gravimetric method and the absorbance ratio were compared. Effects of reaction temperature, GMA content, and reaction time on %grafting, grafting efficiency, and %conversion of GMA monomer were determined. Effect of %grafting on mechanical properties of the graft copolymer was studied. Experimental result showed that the appropriate reaction time was 8 h at a reaction temperature of 30°C. Moreover, tensile strength and modulus of the graft copolymer increased with increasing %grafting. However, elongation at break of the graft copolymer decreased with increasing %grafting. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci 122: 3152–3159, 2011  相似文献   

14.
A novel perfluorinated acrylic monomer 3,5‐bis(perfluorobenzyloxy)benzyl acrylate (FM) with perfluorinated aromatic units was synthesized with 3,5‐bis(perfluorobenzyl)oxybenzyl alcohol, acryloyl chloride, and triethylamine. Copolymers of FM monomer with methyl methacrylate (MMA) were prepared via free‐radical polymerization at 80°C in toluene with 2,2′‐azobisisobutyronitrile as the initiator. The obtained copolymers were characterized by 1H‐NMR and gel permeation chromatography. The monomer reactivity ratios for the monomer pair were calculated with the extended Kelen–Tüdos method. The reactivity ratios were found to be r1 = 0.38 for FM, r2 = 1.11 for MMA, and r1r2 < 1 for the pair FM–MMA. This shows that the system proceeded as random copolymerization. The thermal behavior of the copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). The copolymers had only one glass‐transition temperature, which changed from 46 to 78°C depending on the copolymer composition. Melting endotherms were not observed in the DSC traces; this indicated that all of the copolymers were completely amorphous. Copolymer films were prepared by spin coating, and contact angle measurements of water and ethylene glycol on the films indicated a high degree of hydrophobicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
One of the most useful methods for synthesizing the graft and well‐defined copolymers is the atom transfer radical polymerization (ATRP) method. The polymerization was initiated by polystyrene (PS) carrying chloroacetyl groups as macroinitiator, in the presence of copper chloride (CuCl) and bipyridine (bpy). The macroinitiator (chloroacetylated PS) was prepared by successive chloroacetylation of PS under mild conditions and these reaction conditions overcome the problem of gelation and crosslinking in polymers. Successful graft copolymerizations were performed with methyl methacrylate (MMA) in toluene at 80°C and with acrylonitrile (AN) in tetrahydrofuran/ethylenecarbonate (62.5/37.5 v/v %) mixed solvent at 55°C. The characterization of the copolymers was investigated by 1H‐NMR and FT‐IR spectroscopices. Gel permeation chromatography measurement indicated an increase of the molecular weight of the graft copolymers, as compared to that of the macroinitiator. This measurement also indicated the monomodal molecular weight distribution. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2619–2627, 2006  相似文献   

16.
Copolymers of N‐vinylcarbazole and methyl methacrylate of different compositions were prepared by solution polymerization with azobisisobutyronitrile as an initiator, and their compositions were determined from quantitative 13C{1H}‐NMR spectroscopy. The reactivity ratios for the comonomers were calculated with the Kelen–Tudos and nonlinear error‐in‐variable methods. The complete spectral assignment of the overlapping 1H and 13C{1H} spectra of the copolymers was made with the help of distortionless enhancement by polarization transfer, two‐dimensional heteronuclear single‐quantum correlation, and total correlation spectroscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3005–3012, 2003  相似文献   

17.
A series of new copolymers with desired thermal stability and mechanical properties for applications in leather industry were synthesized from various substituted maleimides and alkyl acrylates. Polymerization was carried out by a free‐radical polymerization using benzoyl peroxide (BPO) as initiator. The monomers and polymers synthesized were characterized by elemental analysis, IR, and nuclear magnetic resonance (NMR). Interestingly, these polymers were soluble in common organic solvents. Copolymer composition and reactivity ratios were determined by 1H‐NMR spectra. The molecular weights of the polymers were determined by gel permeation chromatography. The homo‐ and copolymer of maleimide showed single‐stage decomposition (ranging from 300–580°C). The initial decomposition temperatures of poly[N‐(phenyl)maleimide] [poly(PM)], poly[N‐4‐(methylphenyl)maleimide] [poly(MPM)] and poly[N‐3‐(chlorophenyl)maleimide] [poly(CPM)] were higher compared to those of the copolymers. Heat‐resistant adhesives such as blends of epoxy resin with phenyl‐substituted maleimide‐co‐glycidyl methacrylate copolymers with improved adhesion property were developed. Different adhesive formulations of these copolymaleimides were prepared by curing with diethanolamine at two different temperatures (30°C and 60°C). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1870–1879, 2001  相似文献   

18.
Copolymerizations of methyl methacrylate (MMA) with 4‐vinylpyridine (4VP) were performed from different monomer feed ratios in 1,4‐dioxan at 30°C under free radical initiation experimental conditions, using Ni(II)α‐Benzoinoxime complex as initiator. The obtained copolymers (PMMA4VP) were examined by FTIR and 1H NMR spectroscopies. The composition of these copolymers was calculated, using 1H NMR spectra and elemental analysis. Monomer reactivity ratios were estimated from Fineman–Ross (FR, rm = 0.550, rv = 1.165) and Kelen–Tudos (KT, rm = 0.559, rv = 1.286) linearization methods, as well as nonlinear error in variables model (EVM) method using the RREVM computer program (RREVM, rm = 0.559, rv = 1.264). These values suggest that MMA‐4VP pair copolymerizes randomly. 1H NMR spectra provide information about the stereochemistry of the copolymers in terms of sequence distributions and configurations. These results showed that the age of the Ni complex has an impact not only on its activity towards polymerization reactions but also on the features of the corresponding copolymers, whereas the chemical composition was insensitive to this prominent factor. The mechanism of MMA‐4VP copolymerization is consistent with a radical process as supported by microstructure and molecular weight distribution studies. Thermal behaviours of these copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

19.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

20.
Well‐defined poly(methyl methacrylate) (PMMA) with an α‐isobutyronitrile group and an ω‐bromine atom as the end groups was synthesized by the microemulsion polymerization of methyl methacrylate (MMA) at 70°C with a 2,2′‐azobisisobutyronitrile/CuBr2/2,2′‐bipyridine system. The conversion of the polymerization reached 81.9%. The viscosity‐average molecular weight of PMMA was high (380,000), and the polydispersity index was 1.58. The polymerization of MMA exhibited some controlled radical polymerization characteristics. The mechanism of controlled polymerization was studied. The presence of hydrogen and bromine atoms as end groups of the obtained PMMA was determined by 1H‐NMR spectroscopy. The shape and size of the final polymer particles were analyzed by scanning probe microscopy, and the diameters of the obtained particles were usually in the range of 60–100 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3670–3676, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号