首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
M. Gumus 《Fuel》2010,89(10):2802-2814
In the present study, hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain biodiesel and a comprehensive experimental investigation of combustion (cylinder gas pressure, rate of pressure rise, ignition delay) and heat release (rate of heat release, cumulative heat release, combustion duration and center of heat release) parameters of a direct injection compression ignition engine running with biodiesel and its blends with diesel fuel was carried out. Experiment parameters included the percentage of biodiesel in the blend, engine load, injection timing, injection pressure, and compression ratio. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel can be used in the engine without any modification and undesirable combustion and heat release characteristics were not observed. The modifications such as increasing of injection timing, compression ratio, and injection pressure provided significant improvement in combustion and heat release characteristics.  相似文献   

2.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

3.
Jordan relies heavily on expensive and unreliable imported oil. Therefore, this study was initiated to investigate the potential of ethyl ester used as vegetable oil (VO; biodiesel) to substitute oil-based diesel fuel. The fuels tested were several ester/diesel blends including 100% ester in addition to diesel fuel, which served as the baseline fuel. Variable-speed tests were run on all fuels on a standard test rig of a single-cylinder, direct-injection diesel engine. Tests were conducted to compare these blends with the baseline local diesel fuel in terms of engine performance and exhaust emissions. The results indicated that the blends burned more efficiently with less specific fuel consumption, and therefore, resulted in higher engine thermal efficiency. Furthermore, the blends produced less carbon monoxide and unburned hydrocarbons than diesel fuel. The 100% ester fuel and the blend of 75:25 ester/diesel gave the best performance while the 50:50 blend consistently resulted in the lowest amounts of emissions over the whole speed range tested.  相似文献   

4.
This paper discusses the physical-chemical properties of ethanol-diesel fuel blends. The attention is focused on the properties which influence the injection and engine characteristics significantly. Main properties have been investigated experimentally. The analysis of experimentally obtained fuel properties of tested fuels and their influence on engine characteristics are presented. Physical and chemical properties of diesel fuel and ethanol-diesel fuel blends were measured according to requirements and test methods for diesel fuel (EN590, 2003). The tested fuels were neat mineral diesel fuel (D100), 5% (v/v) ethanol/diesel fuel blend (E05D95), 10% (v/v) ethanol-diesel fuel blend (E10D90) and 15% (v/v) ethanol-diesel fuel blend (E15D85). It has been proved that, for ethanol-diesel fuel blends, some additives are necessary to keep stability under low temperature conditions. Also, cold weather properties test, such as cloud point and pour point tests are negatively affected by phase separation. The rest of the properties, excepting flash point, were within diesel fuel standard specifications. Based on this study, it can be concluded that using additives to avoid phase separation and to raise flash point, blends of diesel fuel with ethanol up to 15% can be used to fuel diesel engines if engine performance tests corroborate it.  相似文献   

5.
H. Raheman  S.V. Ghadge 《Fuel》2008,87(12):2659-2666
The performance of Ricardo E6 engine using biodiesel obtained from mahua oil (B100) and its blend with high speed diesel (HSD) at varying compression ratio (CR), injection timing (IT) and engine loading (L) has been presented in this paper. The brake specific fuel consumption (BSFC) and exhaust gas temperature (EGT) increased, whereas brake thermal efficiency (BTE) decreased with increase in the proportion of biodiesel in the blends at all compression ratios (18:1-20:1) and injection timings (35-45° before TDC) tested. However, a reverse trend for these parameters was observed with increase in the CR and advancement of IT. The BSFC of B100 and its blends with high speed diesel reduced, whereas BTE and EGT increased with the increase in L for the range of CR and IT tested. The differences of BTEs between HSD and B100 were also not statistically significant at engine settings of ‘CR20IT40’ and ‘CR20IT45’. Thus, even B100 could be used on the Ricardo engine at these settings without affecting the performance obtained using HSD.  相似文献   

6.
Oleander oil has been used as raw material for producing biodiesel using ultrasonic irradiation method at the frequency of 20 kHz and horn type reactor 50 watt. A two-step transesterification process was carried out for optimum condition of 0.45 v/v methanol to oil ratio, 1.2% v/v H2SO4 catalyst, 45 °C reaction temperature and 15min reaction time, followed by treatment with 0.25 v/v methanol to oil ratio, 0.75% w/v KOH alkaline catalyst, 50 °C reaction temperature and 15 min reaction time. The fuel properties of Oleander biodiesel so obtained confirmed the requirements of both the standards ASTM D6751 and EN 14214 for biodiesel. Further Oleander biodiesel-diesel blends were tested to evaluate the engine performance and emission characteristics. The performance and emission of 20% Oleander biodiesel blend (B20) gave a satisfactory result in diesel engines as the brake thermal efficiency increased 2.06% and CO and UHC emissions decreased 41.4% and 32.3% respectively, compared to mineral diesel. Comparative investigation of performance and emissions characteristics of Oleander biodiesel blends and mineral diesel showed that oleander seed is a potential source of biodiesel and blends up to 20% can be used for realizing better performance from an unmodified diesel engine.  相似文献   

7.
Various polymeric blends based on sulfonated poly(ether ether ketone) (sPEEK)/poly(vinylidene fluoride) (PVdF) were prepared for the membranes of direct methanol fuel cell. The blend membranes showed good compatibility within a limited composition range of less than around 10 wt% of PVdF. The blend membrane containing 2.5 wt% exhibited highest proton conductivity at room temperature among the tested blends. The dimensional stability was enhanced with introducing PVdF into the blend membrane. These could contribute to high performance of the cell based on the blend membrane.  相似文献   

8.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

9.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

10.
T. Leevijit  G. Prateepchaikul 《Fuel》2011,90(4):1487-1491
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher.  相似文献   

11.
An experimental investigation is conducted to evaluate the use of sunflower and cottonseed oil methyl esters (bio-diesels) of Greek origin as supplements in the diesel fuel at blend ratios of 10/90 and 20/80, in a fully instrumented, six-cylinder, turbocharged and after-cooled, direct injection (DI), Mercedes-Benz, mini-bus diesel engine installed at the authors’ laboratory. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions from the baseline operation of the engine, i.e., when working with neat diesel fuel, and the two bio-diesels are determined and compared. Theoretical aspects of diesel engine combustion with the differing physical and chemical properties of these blends, aid the correct interpretation of the observed engine behavior.  相似文献   

12.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

13.
《Fuel》2006,85(14-15):2187-2194
In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification.  相似文献   

14.
The effects of ignition system, compression ratio, and methanol injector configuration on the brake thermal efficiency (BTE) and combustion of a high-compression direct-injection spark-ignition methanol engine under light loads were investigated experimentally, and its BTE was compared with its diesel counterpart. The experimental results showed that these factors significantly affect the fuel economy under light load. The BTE of a methanol engine using a high-energy multi-spark-ignition system is on average 25% higher than that of one using a single-spark-ignition system at a brake mean effective pressures (BMEP) of 0.11-0.29 MPa and an engine speed of 1600 rpm. Decreasing the compression ratio of the methanol engine from 16:1 to 14:1 markedly increases the BTE under low loads and decreases the BTE at high loads. For the methanol engine, using an injector of a 10-hole × 0.30 mm nozzle decreases the ignition delay and improves the fuel economy compared to when an injector of a 7-hole × 0.45 mm nozzle is used. The combustion duration using an injector of a 7-hole × 0.45 mm nozzle is much longer than that with one of a 10-hole × 0.30 mm nozzle under light loads. As a result, the BTE for a methanol engine with optimal parameters is improved by 27% compared to that for a methanol engine without optimized parameters at a BMEP of 0.17 MPa and an engine speed of 1600 rpm, but the BTE of the optimized methanol engine is 20% lower than that of its diesel counterpart under these operating conditions.  相似文献   

15.
In this paper fuels, based on various DME to diesel ratios are investigated. Physical and chemical properties of DME and diesel display mutual solubility at any ratio. The vapor pressure of DME/diesel blends is lower than that of pure DME at the same temperatures and it decreases with an increase of diesel mass fraction in blends, which is beneficial to the elimination of vapor lock in the fuel supply system on CI engines. Performance, emission and other features of three kinds of DME/diesel blend fuels and diesels are evaluated in a four-cylinder test engine. By taking relative advantages of DME and diesel, the DME/diesel blends could achieve satisfactory properties in lubricity and atomization, which contributed to improvements in spray and combustion characteristics. Simultaneously, smoke emission could be reduced significantly with a little penalty on CO and HC emissions for DME/diesel blended engine at high loads, in comparison to diesel engine. NOx emissions of the engine powered by DME/diesel blends are decreased somewhat. Moreover, the power output would be improved a little and NOx emission could be reduced further if the fuel supply advance angle is retarded appropriately.  相似文献   

16.
Non-edible jatropha (Jatropha curcas), karanja (Pongamia pinnata) and polanga (Calophyllum inophyllum) oil based methyl esters were produced and blended with conventional diesel having sulphur content less than 10 mg/kg. Ten fuel blends (Diesel, B20, B50 and B100) were tested for their use as substitute fuel for a water-cooled three cylinder tractor engine. Test data were generated under full/part throttle position for different engine speeds (1200, 1800 and 2200 rev/min). Change in exhaust emissions (Smoke, CO, HC, NOx, and PM) were also analyzed for determining the optimum test fuel at various operating conditions. The maximum increase in power is observed for 50% jatropha biodiesel and diesel blend at rated speed. Brake specific fuel consumptions for all the biodiesel blends with diesel increases with blends and decreases with speed. There is a reduction in smoke for all the biodiesel and their blends when compared with diesel. Smoke emission reduces with blends and speeds during full throttle performance test.  相似文献   

17.
《Fuel》2007,86(7-8):1053-1061
In this work, we studied the phase diagram of diesel–biodiesel–ethanol blends at different purities of ethanol and different temperatures. Fuel properties (such as density, heat of combustion, cetane number, flash point and pour point) of the selected blends and their emissions performance in a diesel engine were examined and compared to those of base diesel. It was found that the fuel properties were close to the standard limit for diesel fuel; however, the flash point of blends containing ethanol was quite different from that of conventional diesel. The high cetane value of biodiesel could compensate for the decrease of the cetane number of the blends caused by the presence of ethanol. The heating value of the blends containing lower than 10% ethanol was not significantly different from that of diesel. As for the emissions of the blends, it was found that CO and HC reduced significantly at high engine load, whereas NOx increased, when compared to those of diesel. Taking these facts into account, a blend of 80% diesel, 15% biodiesel and 5% ethanol was the most suitable ratio for diesohol production because of the acceptable fuel properties (except flash point) and the reduction of emissions.  相似文献   

18.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

19.
This work compares the performance and emissions from a production 1.0-l, eight-valve, and four-stroke engine fuelled by hydrous ethanol (6.8% water content in ethanol) or 78% gasoline-22% ethanol blend. The engine was tested in a dynamometer bench in compliance with NBR/ISO 1585 standard. The performance parameters investigated were torque, brake mean effective pressure (BMEP), brake power, specific fuel consumption (SFC), and thermal efficiency. Carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC) and oxides of nitrogen (NOX) exhaust emissions levels are also presented. The results showed that torque and BMEP were higher when the gasoline-ethanol blend was used as fuel on low engine speeds. On the other hand, for high engine speeds, higher torque and BMEP were achieved when hydrous ethanol fuel was used. The use of hydrous ethanol caused higher power at high engine speeds, whereas, for low engine speeds, both fuels produced about the same power. Hydrous ethanol produced higher thermal efficiency and higher SFC than the gasoline-ethanol blend throughout all the engine speed range studied. With regard to exhaust emissions hydrous ethanol reduced CO and HC, but increased CO2 and NOX levels.  相似文献   

20.
Methanol-to-diesel (MTD) means a synthetic diesel fuel, its raw material is methanol. And it is a liquid alcohol ether mixture with appropriate amount of additives, which can be blended with diesel fuel at various levels. It was synthesized by methanol with 1,2-epoxypropane and epoxyethane using modified calcined Mg/Al hydroxides as catalysts. The test and study on the physical properties of MTD and the fuel consumption and emissions of diesel engine using the mixed MTD and diesel fuel have been performed. The results indicates that there was no significant difference in the power values of diesel and the blend fuels while fuel consumption increasing around 14%, and of much lower emissions of exhaust. When using the diesel fuel mixed with 20-30% of MTD. The conclusion is that MTD is a cheap and clean low power loss additive fuel for diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号