首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Mapping lake CDOM by satellite remote sensing   总被引:5,自引:0,他引:5  
Given the importance of coloured dissolved organic matter (CDOM) for the structure and function of lake ecosystems, a method to estimate the amount of CDOM in lake waters over large geographic areas would be highly desirable. Advanced Land Imager (ALI) images were acquired in southern Finland (in 2002) and southern Sweden (in 2003) together with in situ measurements of bio-optical properties of 34 lakes (39 measuring stations). Based on this dataset, a band-ratio type algorithm was developed using ALI band 2 and band 3 for estimating CDOM content (absorption of filtrated water at 420 nm) in lakes. Correlation between in situ measured CDOM and the remote sensing estimate of CDOM was high, r2=0.73. The CDOM retrieval algorithm obtained on the basis of two images and in situ data was validated on a third ALI image (eastern Finland, 2002) that was available in the ALI image archive. In situ water-colour monitoring data from 22 lakes (27 measuring stations) in the third image were available in a database of the Finnish Environment Administration. The water-colour data were converted to CDOM absorption values, which were then compared to the results from a third ALI image. The correlation between remotely estimated and in situ CDOM values in the algorithm validation image was high, r2=0.83. These results support the conclusion that CDOM content in lakes over a wide range of concentrations (aCDOM(420) between 0.68 and 11.13 m−1) can be mapped using Advanced Land Imager data.  相似文献   

2.
Lake Vänern, Sweden, is one of Europe’s largest lakes and has a historical, cultural, ecological as well as economic importance. Lake water quality monitoring is required by national and international legislations and directives, but present programmes are insufficient to meet the requirements. To complement in situ based monitoring, the possibility to obtain reliable information about spatial and temporal water quality trends in Lake Vänern from the ENVISAT mission’s MERIS instrument was evaluated. The complete archive (2002–2012) of MERIS (Medium Resolution Imaging Spectrometer) full resolution data was processed using the water processor developed by Free University Berlin (FUB) to derive aerosol optical thickness (AOT), remote-sensing reflectance (Rrs) and water quality parameters: chlorophyll-a (chl-a) concentration, coloured dissolved organic matter absorption at 443 nm (CDOM), and total suspended matter (TSM) concentration. The objective was to investigate if, either, FUB reflectance products in combination with potential lake-specific band ratio algorithms for water quality estimation, or directly, FUB water quality products, could complement the existing monitoring programme.

Application of lake-specific band ratio algorithms requires high-quality reflectance products based on correctly estimated AOT. The FUB reflectance and AOT products were evaluated using Aerosol Robotic Network – Ocean Color (AERONET-OC) match-up data measured at station Pålgrunden in Lake Vänern. The mean absolute percentage differences (MAPDs) of the final reflectance retrievals at 413, 443, 490, 555, and 665 nm were 510%, 48%, 33%, 34%, and 33%, respectively, corresponding to a large positive bias in 413 nm, positive bias in 443–555 nm, and a negative bias in 665 nm. AOT was strongly overestimated in all bands.

The FUB water quality products were evaluated using match-up in situ data of chl-a, filtered absorbance (AbsF(420)) and turbidity as AbsF(420) is related to CDOM and turbidity is strongly related to TSM. The in situ data was collected within the Swedish national and regional monitoring programmes. In order to widen the range of water constituents and add more data to the analysis, data from four large Swedish lakes (Vänern, Vättern, Mälaren, and Hjälmaren) was included in the analysis. High correlation (≥ 0.85) between in situ data and MERIS FUB derived water quality estimates were obtained, but the absolute levels were over- (chl-a) or under- (CDOM) estimated. TSM was retrieved without bias.

Calibration algorithms were established for chl-a and CDOM based on the match-up data from all four lakes. After calibration of the MERIS FUB data, realistic time series could be derived that were well in line with in situ measurements. The MAPDs of the final retrievals of chl-a, AbsF(420) and Turbidity in Lake Vänern were 37%, 15%, and 35%, respectively, corresponding to mean absolute differences (MADs) of 0.9 µg l?1, 0.17 m?1, and 0.32 mg l?1 in absolute values.

The partly inaccurate reflectance estimations in combination with both positive and negative bias imply that successful application of band ratio algorithms is unlikely. The high correlation between MERIS FUB water quality products and in situ data, on the other hand, shows a potential to complement present water quality monitoring programmes and improve the understanding and representability of the temporally and spatially sparse in situ observations. The monitoring potential shown in this study is applicable to the Sentinel-3 mission’s OLCI (Ocean Land Colour Instrument), which was launched by the European Space Agency (ESA) in February 2016 as a part of the EC Copernicus programme.  相似文献   

3.
The number, size, and distribution of inland freshwater lakes present a challenge for traditional water-quality assessment due to the time, cost, and logistical constraints of field sampling and laboratory analyses. To overcome this challenge, Landsat imagery has been used as an effective tool to assess basic water-quality indicators, such as Secchi depth (SD), over a large region or to map more advanced lake attributes, such as cyanobacteria, for a single waterbody. The overarching objective of this research application was to evaluate Landsat Thematic Mapper (TM) for mapping nine water-quality metrics over a large region and to identify hot spots of potential risk. The second objective was to evaluate the addition of landscape pattern metrics to test potential improvements in mapping lake attributes and to understand drivers of lake water quality in this region. Field-level in situ water-quality measurements were collected across diverse lakes (n = 42) within the Lower Peninsula of Michigan. A multicriteria statistical approach was executed to map lake water quality that considered variable importance, model complexity, and uncertainty. Overall, band ratio radiance models performed well (R2 = 0.65–0.81) for mapping SD, chlorophyll-a, green biovolume, total phosphorus (TP), and total nitrogen (TN) with weaker (R2 = 0.37) ability to map total suspended solids (TSS) and cyanobacteria levels. In this application, Landsat TM and pattern metrics showed poor ability to accurately map non-purgable organic carbon (NPOC) and diatom biovolume, likely due to a combination of gaps in temporal overpass and field sampling and lack of signal sensitivity within broad spectral channels of Landsat TM. The composition and configuration of croplands, urban, and wetland patches across the landscape were found to be moderate predictors of lake water quality that can complement lake remote-sensing data. Of the 4071 lakes, over 4 ha in the Lower Peninsula, approximately two-thirds, were identified as mesotrophic (n = 2715). This application highlights how an operational tool might support lake decision-making or assessment protocols to identify hot spots of potential risk.  相似文献   

4.
Assessment of water quality in Lake Garda (Italy) using Hyperion   总被引:3,自引:0,他引:3  
For testing the integration of the remote sensing related technologies into the water quality monitoring programs of Lake Garda (the largest Italian lake), the spatial and spectral resolutions of Hyperion and the capability of physics-based approaches were considered highly suitable. Hyperion data were acquired on 22nd July 2003 and water quality was assessed (i) defining a bio-optical model, (ii) converting the Hyperion at-sensor radiances into subsurface irradiance reflectances, and (iii) adopting a bio-optical model inversion technique. The bio-optical model was parameterised using specific inherent optical properties of the lake and light field variables derived from a radiative transfer numerical model. A MODTRAN-based atmospheric correction code, complemented with an air/water interface correction was used to convert Hyperion at-sensor radiances into subsurface irradiance reflectance values. These reflectance values were comparable to in situ reflectance spectra measured during the Hyperion overpass, except at longer wavelengths (beyond 700 nm), where reflectance values were contaminated by severe atmospheric adjacency effects. Chlorophyll-a and tripton concentrations were retrieved by inverting two Hyperion bands selected using a sensitivity analysis applied to the bio-optical model. The sensitivity analysis indicated that the assessment of coloured dissolved organic matter was not achievable in this study due to the limited coloured dissolved organic matter concentration range of the lake, resulting in reflectance differences below the environmental measurement noise of Hyperion. The chlorophyll-a and tripton image-products were compared to in situ data collected during the Hyperion overpass, both by traditional sampling techniques (8 points) and by continuous flow-through systems (32 km). For chlorophyll-a the correlation coefficient between in situ point stations and Hyperion-inferred concentrations was 0.77 (data range from 1.30 to 2.16 mg m− 3). The Hyperion-derived chlorophyll-a concentrations also match most of the flow-through transect data. For tripton, the validation was constrained by variable re-suspension phenomena. The correlation coefficient between in situ point stations and Hyperion-derived concentrations increased from 0.48 to 0.75 (data range from 0.95 to 2.13 g m− 3) if the sampling data from the re-suspension zone was avoided. The comparison of Hyperion-derived tripton concentrations and flow-through transect data exhibited a similar mismatch. The results of this research suggest further studies to address compatibilities of validation methods for water body features with a high rate of change, and to reduce the contamination by atmospheric adjacency effects on Hyperion data at longer wavelengths in Alpine environment. The transferability of the presented method to other sensors and the ability to assess water quality independent from in situ water quality data, suggest that management relevant applications for Lake Garda (and other subalpine lakes) could be supported by remote sensing.  相似文献   

5.
Landsat thermal data are employed to derive lake and sea surface temperatures. The limitations of this approach are obvious, since the calculation of surface temperatures based solely on image data requires at least two thermal bands to compensate the atmospheric influence which is mainly caused by water vapour absorption. However, the 1 km spatial resolution of currently available multi‐band thermal satellite sensors (NOAA‐AVHRR, MODIS) is often not appropriate for lake and coastal zone applications. Therefore, it is worthwhile investigating the accuracy which can be obtained with single‐band thermal data using radiosonde information of the atmospheric water vapour column from meteorological stations in the study area. In addition, standard atmospheres from the MODTRAN code were considered that are based on seasonal climatologic values of water vapour, e.g. mid‐latitude summer, mid‐latitude winter, etc.

The study area of this investigation comprises various lakes and coastal zones of the Baltic Sea in NE Germany. Landsat‐7 ETM+ imagery of nine acquisition dates was selected covering the time span from February to November 2000. Results of derived lake and sea surface temperatures were compared with in situ measurements and with an empirical model of the Deutscher Wetterdienst (Germany's National Meteorological Service, DWD). RMS deviations of 1.4 K were obtained for the satellite‐derived lake surface temperatures with respect to in situ measurements and 2.2 K with respect to the empirical DWD model. RMS deviations of 1.6 K were obtained with respect to in situ bulk temperatures in coastal zones of the Baltic Sea. This level of agreement can be considered as satisfactory given the principal constraints of this approach. A better accuracy can only be obtained with high spatial resolution (<100 m) multi‐band thermal instruments delivering imagery on an operational basis.  相似文献   

6.
ABSTRACT

The United States Harmful Algal Bloom and Hypoxia Research Control Act of 2014 identified the need for forecasting and monitoring harmful algal blooms (HAB) in lakes, reservoirs, and estuaries across the nation. Temperature is a driver in HAB forecasting models that affects both HAB growth rates and toxin production. Therefore, temperature data derived from the U.S. Geological Survey Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus thermal band products were validated across 35 lakes and reservoirs, and 24 estuaries. In situ data from the Water Quality Portal (WQP) were used for validation. The WQP serves data collected by state, federal, and tribal groups. Discrete in situ temperature data included measurements at 11,910 U.S. lakes and reservoirs from 1980 through 2015. Landsat temperature measurements could include 170,240 lakes and reservoirs once an operational product is achieved. The Landsat-derived temperature mean absolute error was 1.34°C in lake pixels >180 m from land, 4.89°C at the land-water boundary, and 1.11°C in estuaries based on comparison against discrete surface in situ measurements. This is the first study to quantify Landsat resolvable U.S. lakes and reservoirs, and large-scale validation of an operational satellite provisional temperature climate data record algorithm. Due to the high performance of open water pixels, Landsat satellite data may supplement traditional in situ sampling by providing data for most U.S. lakes, reservoirs, and estuaries over consistent seasonal intervals (even with cloud cover) for an extended period of record of more than 35 years.  相似文献   

7.
The relationships between field water reflectance spectra and physico-chemical data of seven freshwater and five saltwater lakes from the Brazilian Pantanal wetlands were characterized. Selection of the lakes was based on previous inspection of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. Principal component analysis (PCA) was used to identify homogeneous groups of lakes, in which the regression relationships were evaluated. The continuum removal method was applied to characterize minor spectral variations in the depth of the absorption bands present in field and image spectra. The results showed lakes with very distinct spectral characteristics. The transition from the freshwater to the saltwater lakes was characterized by lower values of depth and Secchi depth, larger concentrations of dissolved organic carbon (DOC), total suspended sediments (TSS), calcium (Ca), magnesium (Mg), sodium (Na) and potassium (K), and higher values of pH and electrical conductivity. The saline lakes presented a higher overall reflectance in the 400–900?nm range than the freshwater lakes, as indicated by the first principal component. From the optically active constituents analysed, DOC better explained variations in water reflectance. The discrimination of the saltwater lakes along the second principal component was due to the decrease in the chlorophyll (Chl) and to the increase in the DOC concentrations from the greenish to the bluish saline lakes. The AVIRIS instrument was able to detect the narrow 630?nm absorption band present in field water reflectance spectra.  相似文献   

8.
We investigated the use of Landsat Enhanced Thematic Mapper (ETM) imagery to synoptically quantify chlorophyll a (chl a) concentrations. Two adjoining pairs of images of the central North Island were acquired on two different days in summer and spring 2002. 6sv atmospheric correction was compared to the cosine of the solar zenith angle correction (COST) dark object subtraction (DOS) atmospheric correction. The highest correlation between 6sv ln(Band 3) water surface reflectance and ln(chl a) was found in the 24 January 2002 image (r 2 = 0.954). 6sv atmospheric correction was preferable to COST-DOS as it gave more realistic reflectance values at a clear-water reference site and produced the highest correlation coefficient. The results from this investigation suggest that remote sensing provides a valuable tool to assess temporal and spatial distributions of chl a in unmonitored areas within lakes and that predictions may also be extended to unmonitored lakes within the domain of satellite image capture.  相似文献   

9.
Accurate atmospheric correction for turbid inland waters remains a significant challenge. Several atmospheric correction algorithms have been proposed to address this issue, but their performance is unclear in regard to Asian lakes, some of which have extremely high turbidity and different inherent optical properties from lakes in other continents. Here, four existing atmospheric correction algorithms were tested in Lake Kasumigaura, Japan (an extremely turbid inland lake), using in situ water-leaving reflectance and concurrently acquired medium resolution imaging spectrometer (MERIS) images. The four algorithms are (1) GWI (the standard Gordon and Wang algorithm with an iterative process and a bio-optical model) (2) MUMM (Management Unit of the North Sea Mathematical Models); (3) SCAPE-M (Self-Contained Atmospheric Parameters Estimation for MERIS Data) and (4) C2WP (Case-2 Water Processor). The results show that all four atmospheric correction algorithms have limitations in Lake Kasumigaura, even though SCAPE-M and MUMM gave acceptable accuracy for atmospheric correction in several cases (relative errors less than 30% for the 2006 and 2008 images). The poor performance occurred because the conditions in Lake Kasumigaura (i.e. the atmospheric state and/or turbidity) did not always meet the assumptions in each atmospheric correction algorithm (e.g. in 2010, the relative errors ranged from 42% to 83%). These results indicate that further improvements are necessary to address the issue of atmospheric correction for turbid inland waters such as Lake Kasumigaura, Japan.  相似文献   

10.
An innovative method for the determination of aerosol optical thickness (AOT) and surface reflectance for operational use of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) visible to near-infrared data is presented. This method is designed to obtain the atmospheric parameters needed in the correction of the image. This method is based on a simplified radiative transfer equation describing the relation between the ground surface reflectance, AOT and top-of-atmosphere reflectance. By exploiting the ASTER dual-angle view capabilities in band 3N (Nadir) and band 3B (Backwards), surface reflectance and AOT can be retrieved synchronously. Thus, it solves the problem of separating atmospheric radiance from the transmitted radiance of the surface to some extent. After applying this new atmospheric correction method to three areas of ASTER images, Beijing urban city, the Heihe River Basin and Hong Kong of China, ASTER surface reflectance products (AST07) were obtained. AOT values from in situ measurements of CIMEL Electronique 318 Sun Photometers or AERONET (AErosol RObotic NETwork) and surface reflectance in situ measured using an Analytical Spectral Device (ASD) Field Spec spectral radiometer are used for validation. AOT derived from the new method is consistent with in situ station measurements from CIMEL Electronique 318 Sun Photometer and level 2.0 data from AERONET, with correlation coefficient (R 2) of 0.98 and root mean square error of 0.05, whereas Multi-angle Imaging Spectroradiometer AOT products underestimate AERONET AOT and Moderate-Resolution Imaging Spectroradiometer AOT products overestimate AERONET AOT in these regions. More encouraging is the comparison between the corrected surface reflectance, AST07 and ASD measurements. Root mean square error of AST07 and retrieved surface reflectance are as follows: band 1 (556 nm) = 0.04 and 0.05; band 2 (661 nm) = 0.036 and 0.035; band 3 (807 nm) = 0.056 and 0.038, which suggests that compared with AST07 in bands 2 and 3, retrieved surface reflectance has better agreement with measured reflectance from ASD.  相似文献   

11.
Supraglacial lakes are a common feature of the ablation zone of the Greenland Ice Sheet and have significant implications for the water budget of the area, because when they drain they can increase the speed at which ice moves to lower elevations. One valuable tool in assessing the water balance of ice sheets is to track the volume of lakes as they form, through in situ measurements or by determining lake area and depth from aircraft or spacecraft imagery. However, since supraglacial lakes drain unpredictably and rapidly, it is possible that they can form and drain without being observed. Therefore, it is valuable to create tools that can detect the previous presence of supraglacial lakes after they have drained. Three methods of distinguishing drained supraglacial lakes in Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery and hyperspectral airborne imagery were analysed: spectral signature analysis on raw data, band ratio analysis, and textural analysis. All three methods show promise that they could be used to detect former (i.e. drained) supraglacial lakes, thereby refining estimates of the water balance of the Greenland Ice Sheet and providing valuable data to climate models.  相似文献   

12.
Remote sensing techniques can be used to estimate and map the concentrations of suspended matter in inland water, providing both spatial and temporal information. Although an empirical approach to remote sensing of inland waters has been carried out frequently, satellite imagery has not been incorporated into routine lake monitoring programmes due in part to the lack of a standard prediction equation with multi‐temporal capacity for suspended matter. Empirical and physical models must be developed for each lake and its corresponding turbidity composition if they are to be compared over time, or with other bodies of water.

This study aimed to develop and apply multi‐temporal models to estimate and map the concentrations of total suspended matter (TSM) in Lake Taihu, China. Two Landsat‐5 Thematic Mapper (TM) images and nearly contemporaneous in situ measurements of TSM were used. A modified Dark‐Object Subtraction (DOS) method was used, and appeared to be adequate for atmospheric correction. The relationships were examined between TSM concentrations and atmospherically corrected TM band and band ratios. Results of this study show that the ratio TM4/TM1 has a strong relationship with TSM concentrations for lake waters with relatively low concentrations of phytoplankton algae. However, TM3 provided a strong predictive relationship with TSM concentrations despite varied water quality conditions. Different prediction models were developed and compared using multiple regression analysis. The Akaike Information Criteria (AIC) approach was used to choose the best models. The validation of the multi‐temporal capability of the best models indicated that it is feasible to apply the linear regression model using TM3 to estimate TSM concentrations across time in Lake Taihu, even if no in situ data were available.  相似文献   

13.
The Medium Resolution Imaging Spectrometer (MERIS) sensor, with its good physical design, can provide excellent data for water colour monitoring. However, owing to the shortage of shortwave-infrared (SWIR) bands, the traditional near-infrared (NIR)–SWIR algorithm for atmospheric correction in inland turbid case II waters cannot be extended to the MERIS data directly, which limits its applications. In this study, we developed a modified NIR black pixel method for atmospheric correction of MERIS data in inland turbid case II waters. In the new method, two special NIR bands provided by MERIS data, an oxygen absorption band (O2 A-band, 761 nm) and a water vapour absorption band (vapour A-band, 900 nm), were introduced to keep the assumption of zero water-leaving reflectance valid according to the fact that both atmospheric transmittance and water-leaving reflectance are very small at these two bands. After addressing the aerosol wavelength dependence for the cases of single- and multiple-scattering conditions, we further validated the new method in two case lakes (Lake Dianchi in China and Lake Kasumigaura in Japan) by comparing the results with in situ measurements and other atmospheric correction algorithms, including Self-Contained Atmospheric Parameters Estimation for MERIS data (SCAPE-M) and the Basic ERS (European Remote Sensing Satellite) & ENVISAT (Environmental Satellite) (A)ATSR ((Advanced) Along-Track Scanning Radiometer) and MERIS (BEAM) processor. We found that the proposed method had acceptable accuracy in the bands within 560–754 nm (MERIS bands 5–10) (average absolute deviation (AAD) = 0.0081, average deviation (AD) = 0.0074), which are commonly used in the estimation models of chlorophyll-a (chl-a) concentrations. In addition, the performance of the new method was superior to that of the BEAM processor and only slightly worse than that of SCAPE-M in these bands. Considering its acceptable accuracy and simplicity both in principle and at implementation compared with the SCAPE-M method, the new method provides an option for atmospheric correction of MERIS data in inland turbid case II waters with applications aiming for chl-a estimation.  相似文献   

14.
The present study focused on understanding the variability of optically active substances (OASs) and their effect on spectral remote-sensing reflectance (Rrs). Furthermore, the effect of atmospheric correction schemes on the retrieval of chlorophyll-a (chl-a) from satellite data was also analysed. The OASs considered here are chl-a, coloured dissolved organic matter (CDOM), and total suspended matter (TSM). Satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite was used for this study. The two atmospheric correction schemes considered were: multi-scattering with two-band model selection NIR correction (hereon referred as ‘A1’) and Management Unit of the North Sea Mathematical Models (MUMM) correction and MUMM NIR calculation (hereafter referred as ‘A2’). The default MODIS bio-optical algorithm (OC3M) was used for the retrieval of chl-a. Analysis of OASs showed that chl-a was the major light-absorbing component, with highly variable distribution (0.006–25.85 mg m–3). Absorption due to CDOM at 440 nm (aCDOM440) varied from 0.002 to 0.31 m–1 whereas TSM varied from 0.005 to 33.44 mg l–1. The highest concentration of chl-a was observed from August to November (i.e. end of the southwest monsoon and beginning of the northeast monsoon), which was attributed to coastal upwelling. The average value of aCDOM440 was found to be lower than the global mean. A significant negative relationship between aCDOM440 and salinity during the southwest monsoon indicated that much of the CDOM during this season was derived from river discharge. Spectral Rrs was found to be strongly linked to the variability in chl-a concentration, indicating that chl-a was the major light-absorbing component. Satellite-derived spectral Rrs was in good agreement with that in situ when chl-a concentration was lower than 5 mg m–3. The validation of chl-a, derived from in situ Rrs, showed moderate performance (correlation coefficient, R2 = 0.64; log10(RMSE) = 0.434; absolute percentage difference (APD) = 43.6% and relative percentage difference (RPD) = 42.33%). However the accuracy of the algorithm was still within acceptable limits. The statistical analysis for atmospheric correction schemes showed improved mean ratio of measured to estimated chl-a (‘r’ = 1.6), log10(RMSE) (0.49), APD (25.46%), and RPD (17.57%) in the case of A1 as compared with A2, whereas in the case of A2, R2 (0.56), slope (0.26), and intercept (0.27) were better as compared with A1. The two atmospheric correction schemes did not show any significant statistical difference. However the default atmospheric correction scheme (A1) was found to be performing comparatively better probably due to the fact that the concentration of TSM and CDOM was much lower to overcome the impact of chl-a.  相似文献   

15.
Coloured dissolved organic matter (CDOM) is relevant for water quality management and may become an important measure to complement future water quality assessment programmes. An approach to derive CDOM using the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed that may be more accessible to water quality managers by selecting an off-the-shelf software and algorithm with standard atmospheric correction. This study focused on demonstrating the transferability of a remote-sensing reflectance (Rrs) band ratio algorithm, Rrs(667)/Rrs(488), previously developed to derive CDOM absorption (ag(λ)) at multiple MODIS wavebands in open ocean and coastal waters to the United States northern Gulf of Mexico estuaries. In situ calibration regressions at 412, 443, 469, and 488 nm had coefficients of determination (R2) of 0.76, 0.71, 0.69, and 0.57, respectively. Waveband calibrations at 531, 547, and 555 nm were below R2 = 0.50, and therefore were not considered further. MODIS Rrs, from the standard atmospheric correction, followed nearly identical spectral shapes to the in situ HyperSAS Rrs, but were on average 0.002 ± 0.0004 sr?1 less. A satellite to in situ validation match-up window of ≤1 hour was selected with an R2 = 0.82 and root mean square error (RMSE = 1.79) at 412 nm. An in situ water quality mooring demonstrated that the overall response and range of MODIS ag(412) were similar, with relative mean error from –32% to 42%. The advantage to managers was synoptic coverage across multiple estuaries and the ability to provide estimates of derived water quality parameters between the water quality assessment programme sample collection periods, which could offer more holistic assessment.  相似文献   

16.
Precise atmospheric correction is important for applications where small differences in surface reflectance (SR) are significant, such as biomass estimation, crop phenology, and retrieval of water quality parameters. It also enables direct comparison between different image dates and different sensors. As a precursor to monitoring different parameters of water quality around the coastline of Hong Kong using medium-resolution sensors Landsat TM/ETM, and HJ-1A/B, this study evaluated the performance of five atmospheric correction methods. The estimated SR of the first four reflective bands of Landsat 7 ETM+ and of the identical bands of the HJ-1A/B satellites was compared with in situ multispectral radiometer (MSR) SR measurements over sand, artificial turf, grass, and water surfaces for the five atmospheric correction methods – second simulation of the satellite signal in the solar spectrum (6S), fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH), atmospheric correction (ATCOR), dark object subtraction (DOS), and the empirical line method (ELM). Among the five methods, 6S was observed to be consistently more precise for SR estimation, with significantly less difference from the in-situ-measured SR, especially over lower reflective water surfaces. Of the two image-based methods, DOS performed well over the darker surfaces of water and artificial turf, although still inferior to 6S, while ELM worked well for grass sites as compared to the DOS and equalled the good performance of 6S over the high reflective sand surfaces.

The study also evaluated the new standard Landsat SR product Landsat ecosystem disturbance adaptive processing system (LEDAPS) using the in situ measured SR data for the three land surface types – sand, artificial turf, and grass. For the highly and moderately reflecting bright sand and artificial turf, LEDAPS performed poorly, while for the darker grass site it performed better, although still inferior to 6S and ELM methods. This is probably due to the variable aerosol types and atmospheric conditions of Hong Kong, as LEDAPS was mainly compiled with reference to larger continental landmass areas.  相似文献   

17.
18.
ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed.  相似文献   

19.
ABSTRACT

Visible near-infrared and shortwave infrared data acquired by spaceborne sensors contain atmospheric noise, along with target reflectance that may affect its end applications, e.g. geological, vegetation, soil surface studies, etc. Several atmospheric correction algorithms have been already developed to remove unwanted atmospheric components of a spectral signature of Earth targets obtained from airborne/spaceborne hyperspectral image. In spite of this, choosing of an appropriate atmospheric correction algorithm is an ongoing research. In this study, two hybrid atmospheric correction (HAC) algorithms incorporating a modified empirical line (ELm) method were proposed. The first HAC model (named HAC_1) combines (i) a radiative transfer (RT) model based on the concepts of RT equations, which uses real-time in situ atmospheric and climatic data, and (ii) an ELm technique. The second one (named HAC_2) combines (i) the well-known ATmospheric CORrection (ATCOR) model and (ii) an ELm technique. Both HAC algorithms and their component single atmospheric correction algorithms (ATCOR, RT, and ELm) were applied to radiance data acquired by Hyperion satellite sensor over study sites in Australia. The performances of both HAC algorithms were analysed in two ways. First, the Hyperion reflectances obtained by five atmospheric correction algorithms were analysed and compared using spectral metrics. Second, the performance of each atmospheric correction algorithm was analysed for prediction of soil organic carbon (SOC) using Hyperion reflectances obtained from atmospheric correction algorithms. The prediction model of SOC was built using partial least square regression model. The results show that (i) both the hybrid models produce a good spectrum with lower Spectral Angle Mapper and Spectral Information Divergence values and (ii) both hybrid algorithms provided better SOC prediction accuracy, in terms of coefficient of determination (R2), residual prediction deviation (RPD), and ratio of performance to interquartile (RPIQ), with R2 ≥ 0.75, RPD ≥ 2, and RPIQ ≥ 2.58 than single algorithms. HAC algorithms, developed using ELm technique, may be recommended for atmospheric correction of Hyperion radiance data, when archived Hyperion reflectance data have to be used for SOC prediction mapping.  相似文献   

20.
Salinity dominates seawater density and directly affects physical and biochemical processes. Having a reliable retrieval model is essential to providing frequent and accurate sea surface salinity (SSS) data for marine research. Remote-sensing techniques provide alternatives for SSS data retrieval with its advantages of wide area surveys and real-time monitoring. In the present study, inverse relationship between SSS and coloured dissolved organic matter (CDOM) concentration in the Chinese Bohai Sea was verified. Thus, four simple band ratios of the original remote-sensing reflectance (Rrs) used to retrieve the CDOM concentration were compared and tested during SSS retrieval. Rrs (531)/Rrs (551) performed best among the four given band ratios. The model employed here can be applied to derive SSS with a root mean square error (RMSE) of 0.26 practical salinity units (psu) (R2 = 0.76). A calibration model was verified using a discrete dataset of the measured SSS and was tested further during mapping of SSS in the Chinese Bohai Sea during 2010–2014. The yielded spatial patterns of SSS were satisfactory and an inverse relationship between SSS and the Yellow River discharge was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号