首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
对豫西南某固定碳含量8.95%的晶质微细粒鳞片石墨矿石进行了石墨富集工艺试验研究,结果表明,矿石经粗磨粗选后得到粗精矿,粗精矿采用立式搅拌磨机5次再磨、5次精选,中矿1~3混合后扫选,扫选精矿返回粗选,扫选尾矿合并进入尾矿,中矿4~5返回精选3的工艺流程,可以获得固定碳含量94.05%、回收率95.74%的石墨精矿。  相似文献   

2.
针对黑龙江萝北鳞片石墨矿物共生关系复杂的现状,选取具有代表性的矿石,结合矿石工艺矿物学研究,在破碎、磨矿、浮选等试验的基础上确定最佳选矿工艺流程。研究结果表明:在粗磨时间为3.5 min、煤油用量为250 g/t、仲辛醇用量为25 g/t的条件下,矿石采用一次粗选、一次扫选,粗精矿经四阶段再磨后五次精选,中矿1、中矿2、中矿3合并扫选后返回粗选,中矿4、中矿5、中矿6合并返回一段再磨的闭路选矿工艺流程,可获得精矿固定碳含量为95.92%、回收率为95.24%、尾矿品位为0.87%的优良工艺指标。试验所确定的最佳选矿工艺流程,可为该地区石墨选矿厂的工艺流程设计提供一定理论借鉴。  相似文献   

3.
刘新  张凌燕  李向益 《金属矿山》2014,43(5):105-109
黑龙江萝北某鳞片状低品位石墨矿石矿物嵌布关系复杂,矿石硬度较大。为确定该资源的节能、高效开发利用方案,对有代表性矿石进行了选矿试验。结果表明,在粗磨磨矿细度为-0.074 mm占90.06%的情况下,以石灰(1 000 g/t)为黄铁矿抑制剂、煤油(460 g/t)为石墨捕收剂、2#油(70 g/t)为起泡剂进行1次粗选,粗精矿经5阶段再磨再选(最后一次再磨产品为2次连续精选),中矿1直接抛尾,中矿2、中矿3合并返回粗选,中矿4~中矿6返回与精矿1合并入再磨2的闭路流程处理该固定碳含量为13.12%的石墨矿石,可获得固定碳含量为97.50%、回收率为90.63%、-0.074 mm占76.70%的优质石墨精矿,达到 GB/T3518-1995中石墨精矿最高质量等级标准。  相似文献   

4.
四川某难选石墨矿选矿试验研究   总被引:1,自引:0,他引:1  
为解决开发年代较久的四川某细粒难选石墨矿选矿技术经济指标较低的问题,在条件试验的基础上,对粗精矿再磨再选次数、低品位中矿的处理工艺、全闭路流程试验进行了研究。结果表明,对固定碳含量22.46%的试样,采用1次粗磨1次粗选1次扫选,粗精矿5次再磨6次精选,中矿1~中矿4合并再磨再选、再选精矿返回再磨1作业,中矿5~中矿7合并进入再磨2作业,最终获得了固定碳含量为90.47%、回收率为87.34%的精矿。  相似文献   

5.
李健  黄鹏  白丁  康健  刘爽  林璠 《金属矿山》2016,45(11):89-93
湖北某低品位细鳞片石墨矿石固定碳含量为4.30%,主要为晶质石墨,极少量为隐晶质石墨;既有单一鳞片,也有鳞片集合体,石墨鳞片在显微镜下呈弯曲鳞片状、显微鳞片状,片径一般在0.001~0.03 mm。为确定合适的石墨富集工艺,采用阶段磨矿、阶段浮选原则流程进行了选矿试验。结果表明:矿石经粗磨(-0.074 mm占70%)—1粗1扫浮选—再磨1(-0.045 mm占85%)—第1,2次精选—再磨2(-0.045 mm占98%)—第3,4次精选—再磨3(-0.045 mm占99.73%)—第5、6次精选,中矿1~中矿4合并再选后返回粗选,中矿5、中矿6返回精选1,中矿7返回精选5的闭路流程处理,可得到固定碳含量90.17%、回收率90.38%的石墨精矿。  相似文献   

6.
为了更好地保护某鳞片状石墨矿石中的大鳞片石墨,分别进行了传统的多段磨矿多段精选工艺试验和新工艺试验。结果表明,破碎至-2 mm的原矿采用直接粗浮石墨—石墨粗精矿砾磨后4次精选—粗选尾矿与精选1尾矿合并经强磁选、脱泥脱杂后再球磨—2次扫选—扫选1精矿与砾磨产品合并精选、其他中矿顺序返回流程处理,获得的石墨精矿固定碳品位和固定碳回收率分别为96.26%和95.32%,+0.15 mm的大鳞片石墨产率达55.36%,与传统工艺比较,新工艺最突出的优势是+0.15 mm的大鳞片石墨产率高出17.66个百分点,大大地提高了石墨精矿的经济价值。  相似文献   

7.
针对四川省某细鳞片石墨矿,开展矿石性质研究,发现矿石中石墨含量为12.50%,其中+100目鳞片石墨仅占20.38%,石墨多呈条带状分布且层间夹杂有黑云母、石英等脉石矿物,不利于石墨单体解离与选矿富集。通过浮选磨矿细度、药剂用量、中矿处理及流程试验研究,确定原矿经过一段粗磨一段粗选、两段扫选、粗精矿经过七段再磨八段精选、中矿分批集中返回的工艺流程,最终获得石墨精矿固定碳品位91.10%、回收率92.01%。研究结果为细鳞片石墨矿的开发利用提供参考。  相似文献   

8.
为了解东北某石墨矿选矿工艺特征及矿石可选性,对该晶质石墨矿进行了矿石性质、石墨粗选条件试验、石墨精选条件试验和闭路试验等一系列试验研究。研究结果表明:该石墨矿适宜一段粗磨、粗精矿九段再磨、10次精选、中矿分段集中返回的选矿流程,闭路试验获得的石墨精矿固定碳含量为94.52%,固定碳回收率为92.19%。试验研究为该石墨矿的选厂工艺参数优化提供了数据支持和技术指导,亦可为相似矿石性质的石墨矿石的可选性提供参考。  相似文献   

9.
黑龙江某石墨矿属于晶质石墨矿石,原矿固定碳含量9.3%。通过对该地区鳞片石墨矿进行选矿实验研究,得出适宜的浮选条件为:粗选磨矿细度为-75μm 60%的条件下,煤油用量为52 g/t,2~#油用量为56 g/t。进行一段粗选两段扫选、粗精矿五段再磨六段精选,中矿循序返回的闭路实验流程,最终获得产率9.19%,固定碳品位94.08%,回收率94.82%的石墨精矿产品,为该地区石墨资源的开发利用提供了技术依据。  相似文献   

10.
黑龙江某石墨矿属于晶质石墨矿石,原矿固定碳含量9.3%。通过对该地区鳞片石墨矿进行选矿试验研究,得出适宜的浮选条件为:粗选磨矿细度为-75μm含量60%的条件下,煤油用量为52g/t,2#油用量为56g/t。进行一段粗选两段扫选、粗精矿五段再磨六段精选,中矿循序返回的闭路试验流程,最终获得产率9.19%,固定碳品位94.08%,回收率94.82%的石墨精矿产品,为该地区石墨资源的开发利用提供了技术依据。  相似文献   

11.
朝鲜某地细粒级石墨矿选矿试验研究   总被引:1,自引:0,他引:1  
朝鲜某地细粒级隐晶质石墨矿,原矿品位较低,石墨颗粒细小,与石英呈蜂窝状均匀嵌布,分离较困难。针对该矿石性质,对该矿进行选矿试验研究,通过采用一次粗磨一次扫选,粗精矿五次再磨七次精选,中矿(1-4)合并再选,中矿(5-8)集中返回再磨Ⅱ的浮选工艺流程进行开路、闭路试验,以及碳酸钠作调整剂,煤油作捕收剂,2#油作起泡剂,最终可获得品位为93.18%,回收率为91.23%的石墨精矿。  相似文献   

12.
对内蒙古某含CaF2 41.14%、SiO2 42.59%、CaCO3 1.68%的高含泥石英型萤石矿进行了选矿工艺优化试验研究。根据矿石性质,进行了中矿顺序返回和精选Ⅰ中矿扫选后抛尾两种原则工艺流程的闭路试验研究,萤石粗选时,采用碳酸钠作调整剂,水玻璃作抑制剂,耐低温的改性脂肪酸类BK410B作捕收剂将萤石矿物浮出,获得萤石粗精矿;萤石粗精矿再磨后,采用酸化水玻璃作抑制剂8次精选,得到萤石精矿。通过中矿顺序返回和精选Ⅰ中矿扫选后抛尾两种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了精选Ⅰ中矿扫选后抛尾的工艺流程,闭路试验获得CaF2品位97.68%、CaCO3品位0.55%、SiO2品位1.38%、CaF2回收率95.72%的萤石精矿。新工艺实现了矿石中萤石矿物的高效回收。   相似文献   

13.
湖北某贫细钼矿石钼品位为0.129%,主要钼矿物辉钼矿以极细小片状或鳞片状单晶体形式分布在脉石矿物裂隙中,粒径约0.01 mm,属难解离钼矿石。为高效开发利用该矿石资源,采用阶段磨选流程对该矿石进行了选矿试验研究。结果表明,采用一段磨矿、1粗1精2扫、中矿顺序返回(扫选1精矿返回一段磨矿),一段闭路磨选精矿二段磨矿、1粗6精3扫、中矿顺序返回(精选1尾矿返回二段磨矿)闭路流程处理该试样,最终可获得Mo品位为51.08%、Mo回收率为85.92%的钼精矿。试验确定的工艺流程是该矿石的高效开发利用流程。  相似文献   

14.
通过对该石墨矿工艺矿物学、选矿的影响因素及选矿工艺流程的探索,研究该矿石的可选性;经过一次粗磨两次扫选,粗精矿四次再磨五次精选,获得固定碳含量为92.16%的石墨精矿,精矿回收率为88.00%,选别效果理想。  相似文献   

15.
以澳大利亚西部某地石墨矿为原矿,在研究原矿性质的基础上,进行条件试验,确定适宜的粗磨磨矿细度、粗选捕收剂、起泡剂、抑制剂的用量以及粗选的浓度。在最佳条件试验结果的基础上,设计了开、闭路试验流程,得到最终的工艺流程和结果为:原矿进行1次粗磨、1次粗选、1次扫选,粗精矿进行4次再磨、5次精选,中矿1~3合并再磨再选后返至精选Ⅰ,中矿4、5、6由粗选开始逐级返回的工艺流程,石墨精矿固定碳含量90.50%,回收率为92.46%。  相似文献   

16.
为了满足经济建设对石墨的需求,保护我国现有的石墨矿石资源和矿区生态环境,增加社会财富,在对黑龙江萝北某石墨尾矿进行性质分析的基础上,采用浮选工艺进行了石墨再回收试验。结果表明:①该石墨尾矿-0.074 mm占89.48%,固定碳含量为4.98%,石墨单体解离度为75.59%,试样中的石墨为无定形石墨,多以鳞片状或平行状石墨集合体及粒状单体形式存在,具有强非均质性,石墨主要与云母和石英连生。②采用1粗1精—4阶段磨矿5阶段精选—高品位中矿直接返回—低品位中矿1次扫精选后返回流程处理该石墨尾矿,最终获得了固定碳含量为85.65%、回收率为66.22%的石墨精矿,该精矿固定碳含量达到GB3519—83规定的耐火级石墨材料质量标准要求。  相似文献   

17.
辽宁某选铁尾矿属低含量石墨固定碳选铁尾矿,其中铁含量为9.92%,固定碳含量为2.26%,通过浮选试验对其综合回收。针对石墨可浮性好的特点,用生石灰作铁抑制剂,煤油作捕收剂,2#油(松醇油)作起泡剂,采用1次粗选、4次精选进行开路试验,在开路试验的基础上将中矿1和中矿2返回粗选,中矿3和中矿4返回精选II进行闭路试验,获得碳品位65.29%、回收率52.85%的石墨精矿,为该选铁尾矿回收利用石墨提供了技术支持。  相似文献   

18.
采用化学分析、X射线衍射(XRD)和浮选试验等技术手段,揭示朝鲜某石墨矿工艺矿物学特征,探明磨矿细度、浮选工艺流程和参数,筛选适宜捕收剂和起泡剂,并确定其用量。结果表明,石墨矿主要有用矿物为石墨、炭质及少量石英、方解石、绢云母、黄铁矿等,矿石呈钢灰色,细晶质鳞片变晶结构,致密块状构造,网脉状构造,为典型隐晶质石墨矿。粗选的最佳工艺条件为:粒度为-0.074 mm含量79.10%、乳化煤油用量为2800 g/t、MIBC用量为180 g/t、浮选时间为5 min;较为合理的工艺流程:1次粗选、1次扫选,粗选精矿和扫选精矿混合再磨,然后经过5次精选,将精1、精2、精3和精4中矿混合再磨再选,再选精矿返回精1,获得固定碳含量87.40%、回收率93.11%的石墨精矿。  相似文献   

19.
武俊杰  孙阳  缑明亮  苏超 《金属矿山》2014,32(11):75-79
陕西某钼矿石矿物成分复杂,主要有用矿物有辉钼矿、方铅矿、黄铁矿,并有少量钼铅矿等,钼、铅、硫、金等有回收价值,其中钼、铅主要以硫化物形式存在。为高效开发利用该矿石,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占68%的情况下1次粗浮选选钼、钼粗精矿再磨至-0.038 mm占93.75%的情况下4次精选选钼,1粗1扫钼尾矿1粗1扫2精选铅,铅扫选尾矿1粗2扫2精选硫,所有中矿顺序返回闭路流程处理,最终获得了钼品位为49.24%、钼回收率为89.19%的钼精矿,铅品位为61.69%、铅回收率为83.47%的铅精矿,硫品位为46.32%、硫回收率为68.21%的硫精矿,较好地实现了钼铅硫的综合回收。  相似文献   

20.
某高镁铜镍矿石含镍0.76%、铜0.16%、氧化镁25.12%,铜矿物主要为黄铜矿,镍矿物主要为镍黄铁矿,脉石矿物主要有透闪石、滑石、蛇纹石,橄榄石、透辉石及绿泥石等少量,有害杂质组分滑石、蛇纹石及绿泥石等的含量高达42%。矿石中铜、镍的氧化率均较低,原生硫化铜占总铜的87.50%,硫化镍占总镍的98.68%。为获得低镁铜镍混合精矿,进行了选矿试验。结果表明,矿石在磨矿细度为-0.074 mm占70%的情况下,采用2粗2扫2精,精选1尾矿连续2次精扫选,精选2尾矿与精扫选1精矿合并返回,其他中矿顺序返回流程处理,可获得铜品位为2.28%、镍品位为11.81%、铜回收率为70.37%、镍回收率为76.20%、氧化镁含量仅为4.38%的铜镍混合精矿,产品达到一级品质量标准(镍品位大于10%,氧化镁含量小于6%);抑镁效果取得成功的关键在于在精选段添加了北京矿冶研究总院研制的含镁脉石矿物的高效抑制剂——改性CMC(总添加量为480 g/t)。试验流程具有稳定、低药耗、高效等优点,适合该矿石的处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号