首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用S35高强型聚酰亚胺(PI)纤维作为增强体,热塑性树脂作为基体,采用热压工艺制备了织物结构和正交单向无纬(UD)结构复合材料靶板,通过弹道极限速度测试和背部变形测试,研究了增强体结构和界面结合强度对PI纤维增强热塑性树脂基复合材料防弹性能的影响。结果表明:高强型聚酰亚胺纤维表现出了优异的防弹性能;UD结构靶板更适用于防铅芯弹;织物结构靶板更适用于防破片;当界面剥离强度由5.45N/cm提高到26.44N/cm时,剥离后界面处的纤维表面形貌的破坏程度逐渐增加。当侵彻体为5.6g铅芯弹时,随着界面剥离强度的提高,复合材料靶板的防弹性能呈现出先提高后降低的趋势;并且靶板的背部变形逐渐减小,进一步证明了界面结合强度对复合材料靶板防弹性能的影响。  相似文献   

2.
玄武岩纤维增强复合材料抗弹性能试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
摘要:为了研究玄武岩纤维增强复合材料的抗弹性能,利用不同树脂基体制作了玄武岩纤维增强复合材料靶板试件,进行了弹道测试。研究了玄武岩纤维增强复合材料的抗侵彻性能和典型破坏模式,并分析了不同树脂基体和不同铺层方式对靶板防弹效果的影响。研究表明,玄武岩纤维增强复合材料在受弹体侵彻时,主要呈现局部破坏,破坏形式是迎弹面的纤维剪切失效、背弹面的拉伸断裂失效。另外,根据轻型防护的要求,提出设计新型防护结构的思路。研究结果可以为轻型复合装甲设计提供参考。  相似文献   

3.
纤维增强防弹复合材料的抗贯穿性能研究是为现代战争中的防护装甲提供必要的设计依据.采用有限元技术对某一典型的纤维增强复合材料抗贯穿过程进行动态仿真分析,得到了它的弹道极限速度,与文献中的试验数据以及半经验公式得到的计算结果吻合.提出一种符合预定抗弹性要求的层合板厚度设计的方法.  相似文献   

4.
以超高分子量聚乙烯(Ultra High Molecular Weight Polyethylene,UHMWPE)纤维、S-玻璃纤维、芳纶1414纤维和杂环芳纶纤维增强聚烯烃(Polyolefin,PO)和水性聚氨酯(Waterborne Polyurethane,WPU)树脂,采用热压工艺制备正交单向无纬(UD)结构复合材料装甲板;通过装甲板弹道极限速度测试,研究了纤维增强树脂基复合材料装甲板防弹性能的影响因素;通过体视显微镜观察装甲板侵彻破坏形貌,分析了纤维增强树脂基复合材料的破坏机制。结果表明:UHMWPE纤维增强PO树脂基复合材料的防弹性能与UHMWPE纤维的强度和模量呈正相关,但纤维模量对复合材料防弹性能的影响随着纤维模量的增大而逐渐变弱;在WPU树脂体系下,四种纤维的防弹性能由高到低依次是UHMWPE纤维、杂环芳纶纤维、芳纶1414纤维、S-玻璃纤维;纤维增强树脂基复合材料装甲板中纤维破坏方式有迎弹面纤维被剪切冲塞、中部被纤维拉伸变形后剪切、背弹面纤维被拉伸断裂,中部纤维拉伸变形是消耗子弹动能的主要方式。  相似文献   

5.
为研究层间混杂复合材料装甲板的防弹性能及其防弹机制,采用钢芯弹侵彻层间混杂复合材料装甲板。以超高分子量聚乙烯(Ultra high molecular weight polyethylene,UHMWPE)纤维、对位芳香族聚酰胺纤维作增强纤维,水性聚氨酯(Waterborne Polyurethane,WPU)树脂和环氧树脂(Epoxy resin,EP)作基体,采用热压工艺制备单向(Unidirectional,UD)结构的层间混杂复合材料装甲板。研究混杂比例、防弹面和树脂基体对混杂复合材料装甲板防弹性能的影响以及弹击后混杂复合材料装甲板的破坏形貌,分析混杂复合材料装甲板的防弹机制,并对复合材料装甲板的破坏机制进行了分析。结果表明:混杂复合材料装甲板的防弹性能优于其任一单一纤维复合材料装甲板;WPU的防弹性能要优于环氧树脂;以UHMWPE纤维复合材料充当防弹面时,混杂复合材料装甲板具有更好的防弹性能;纤维拉伸变形和装甲板分层是纤维复合材料装甲板主要的吸能方式。   相似文献   

6.
采用SHPB 冲击试验装置, 对AF/ ZF(Aramid Fiber/ Zylon Fiber) 混杂纤维防弹复合材料进行了横向冲击试验, 获得了不同混杂比的混杂复合材料的载荷历史与位移历史, 进一步分析了其破坏过程和能量吸收特性。所得结果与不同混杂比的AF/ ZF 混杂纤维复合材料实弹靶试吸能特性变化趋势相似。结果表明, 进行不同混杂比AF/ ZF 混杂纤维复合材料的横向冲击试验对预测实弹冲击的破坏吸能有参考价值。   相似文献   

7.
分析了纺织复合材料和陶瓷的低速冲击性能,并以此为理论基础,剖析陶瓷/复合材料装甲板受弹头冲击时的防弹机理,并建立此过程的动态分析模型,讨论和预测复合装甲的损伤和破坏,为复合材料在复合装甲上的应用和防弹能力预测提供理论分析依据。  相似文献   

8.
以舰用轻型复合装甲研究为背景,针对不同纤维增强种类(包括玻纤织物CA00、C200、SW220和芳纶纤维织物T750)以及不同面密度层合板结构,在6.2g刚性微曲面柱形弹弹道冲击下的防护能力展开实验研究,着重讨论了层合板结构弹道冲击下破坏模式,弹体初始侵彻速度及面密度与抗弹能力和抗弹效率之间的关系,认为不同的破坏模式体现了不同的吸能特性和纤维失效机理.  相似文献   

9.
三维编织复合材料弹道侵彻准细观层次有限元计算   总被引:10,自引:0,他引:10       下载免费PDF全文
三维编织复合材料相比于层合复合材料有较高的层间剪切强度和断裂韧性,因而具有更高的冲击损伤容限。用钢芯弹对三维编织复合材料作弹道贯穿测试,得到弹体的入射速度和剩余速度,并考察侵彻破坏模式。目前对三维编织复合材料弹道侵彻性能计算主要建立在连续介质假设上,从真实细观结构计算三维编织复合材料弹道冲击性能尚有一定难度,用三维结构复合材料的纤维倾斜模型在准细观结构层次上分解三维编织复合材料,就其中的一块倾斜单向板作弹道侵彻有限元计算,由弹体动能损失得到贯穿整个复合材料靶体后弹体的剩余速度。有限元计算及与弹道测试结果的比较证明在准细观层次上计算三维编织复合材料弹道冲击性能的有效性。   相似文献   

10.
随着弹体的侵彻能力逐渐增强,复合防弹装甲成为不可或缺的装备之一。基于ANSYS建立了陶瓷/纤维/阻尼复合防弹靶板的冲击有限元模型,揭示了材料参数和几何参数对复合防弹靶板的影响规律,利用多目标遗传算法优化了碳化硅陶瓷/碳纤维/超高分子量聚乙烯纤维/背层阻尼复合防弹靶板结构,并通过实验验证了优化设计结果的可信性。结果表明:同面密度条件下,涂刷一定厚度背层阻尼对靶板防弹性能的提升较为显著;采用遗传算法优化后的复合防弹靶板结构为:6.9mm碳化硅陶瓷/4.8mm碳纤维层合板/6.0mm超高分子量聚乙烯(UHMWPE)纤维层合板/1.1mm阻尼,面密度为36.236kg/m2。相同防弹性能条件下,与陶瓷/装甲钢结构靶板相比,优化后的靶板面密度降低超过49%。  相似文献   

11.
《Composites Part B》2003,34(4):361-371
This paper presents an analytical model to calculate decrease of kinetic energy and residual velocity of projectile penetrating targets composed of multi-layered planar plain-woven fabrics. Based on the energy conservation law, the absorbed kinetic energy of projectile equals to kinetic energy and strain energy of planar fabric in impact-deformed region if deformation of projectile and heat generated by interaction between projectile and target are neglected. Then the decrease of kinetic energy and residual velocity of projectile after the projectile perforating multi-layered planar fabric targets could be calculated. Owing to fibers in fabric are under a high strain rate state when fabric targets being perforated by a high velocity projectile, the mechanical properties of the two kinds of fibers, Twaron® and Kuralon®, respectively, at strain rate from 1.0×10−2 to 1.5×103 s−1, are used to calculate the residual velocity of projectile. It is shown that the mechanical properties of fibers at high strain rate should be adopted in modeling rate-sensitivity materials. Prediction of the residual velocities and energy absorbed by the multi-layered planar fabrics show good agreement with experimental data. Compared with other models on the same subject, the perforating time in this model can be estimated from the time during which certain strain at a given strain rate is generated. This method of time estimation is feasible in pure theoretical modeling when the perforation time cannot be obtained from experiments or related empirical equations.  相似文献   

12.
3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2? fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.  相似文献   

13.
A very simple one-dimensional and fully analytical model of ballistic impact against ceramic/composite armors is presented in this paper. The analytical model has been checked both with ballistic tests and numerical simulations giving predictions in good agreement with them. The model allows the calculation of residual velocity, residual mass, and the projectile velocity and the deflection or the strain histories of the backup material. These variables are important in describing the phenomenological process of penetration. Described are modifications to previous work of impact into ceramics combined with a new composites model. The development of this composite model is based on studies of the impact in yarns, fabrics and finally composites.  相似文献   

14.
This paper presents a material model suitable for simulating the behavior of dry fabrics subjected to ballistic impact. The developed material model is implemented in a commercial explicit finite element (FE) software LS-DYNA through a user defined material subroutine (UMAT). The constitutive model is developed using data from uniaxial quasi-static and high strain rate tension tests, picture frame tests and friction tests. Different finite element modeling schemes using shell finite elements are used to study efficiency and accuracy issues. First, single FE layer (SL) and multiple FE layers (ML) were used to simulate the ballistic tests conducted at NASA Glenn Research Center (NASA-GRC). Second, in the multiple layer configuration, a new modeling approach called Spiral Modeling Scheme (SMS) was tried and compared to the existing Concentric Modeling Scheme (CMS). Regression analyses were used to fill missing experimental data – the shear properties of the fabric, damping coefficient and the parameters used in Cowper-Symonds (CS) model which account for strain rate effect on material properties, in order to achieve close match between FE simulations and experimental data. The difference in absorbed energy by the fabric after impact, displacement of fabric near point of impact, and extent of damage were used as metrics for evaluating the material model. In addition, the ballistic limits of the multi-layer fabrics for various configurations were also determined.  相似文献   

15.
This paper presents the influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene (UHMWPE) composite laminate. UHMWPE composite laminates, reinforced by three kinds of fabric structures, unidirectional prepreg, 2D plain-woven and 3D single-ply orthogonal woven fabrics, were fabricated via hot pressing curing process. Through a series of standard ballistic tests, we demonstrated that unidirectional composite laminates exhibit higher ballistic impact velocity and absorbed energy capacity compared to others. A bi-linear relationship was found between the ballistic limit velocity and specimen thickness. Furthermore, the dominant failure mechanisms of unidirectional composite laminates were identified to be plugging and hole friction for thin laminates, whereas delamination, fiber tension and bulging for thick ones.  相似文献   

16.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

17.
Fabrics constructed from different weaving architectures such as plain, basket, twill and satin provide varying flexibility and durability when applied on surfaces of complex structures for protective applications. They also affect the manufacturing processes and mechanical properties of both fabrics and composite structures in various applications such as soft armours, helmets, aircraft engine cowlings or automobile monocoques. In this work, the influences of weaving architectures on the ballistic resistance and energy absorption of both single and multi-layer Twaron® fabrics are investigated. A mesoscale yarn model is constructed, validated experimentally, and analytical. Finite element fabric models of different fabric structures are then developed and their firmness is quantified using interlacing factors. Numerical models for plain weave are validated against experimental results from single-ply ballistic tests. The evolutions of kinetic, strain, and friction energy components, normalised with areal mass, are presented to demonstrate the better ballistic protection of the plain weave compared with other weaving architectures. Further investigations on multi-ply systems illustrate the energy absorption capacities for different types of woven fabrics and the associated ballistic resistances. The research results indicate that weaving architectures and fabric firmness are less influential on the overall ballistic protection of multi-ply systems compared to the single-ply cases.  相似文献   

18.
Strong, low density fibres have been favoured materials for ballistic protection, but the choice of fibres is limited for making body armour that is both protective and lightweight. In addition to developments of improved fibres, alternative approaches are required for creating more protective and lighter body armour. This paper reports on a study on hybrid fabric panels for ballistic protection. The Finite Element (FE) method was used to predict the response of different layers of fabric in a twelve-layer fabric model upon impact. It was found that the front layers of fabric are more likely to be broken in shear, and the rear layers of fabric tend to fail in tension. This suggested that using shear resistant materials for the front layer and tensile resistant materials for the rear layer may improve the ballistic performance of fabric panels. Two types of structure, ultra-high-molecular-weight polyethylene (UHMWPE) woven and unidirectional (UD) materials, were analyzed for their failure mode and response upon ballistic impact by using both FE and experimental methods. It was found that woven structures exhibit better shear resistance and UD structures gives better tensile resistance and wider transverse deflection upon ballistic impact. Two types of hybrid ballistic panels were designed from the fabrics. The experimental results showed that placing woven fabrics close to the impact face and UD material as the rear layers led to better ballistic performance than the panel constructed in the reverse sequence. It has also been found that the optimum ratio of woven to UD materials in the hybrid ballistic panel was 1:3. The improvement in ballistic protection of the hybrid fabric panels allows less material to be used, leading to lighter weight body armour.  相似文献   

19.
High speed cine techniques have been used to examine the perforation of thin targets constructed of glass fibre reinforced plastic (GRP), Spectra (Allied Signal) and Kevlar (Du Pont) composites as well as nylon and Kevlar fabrics. From the film record the kinetic, strain and (for the composites only) delamination/surface energy terms were evaluated for the rear layer of material. Simple models for the deformation of the panels were used to compare these energies, summed for all layers, with the projectile energy loss. All the energy terms are shown to be significant. The Kevlar fabric does not fit the pattern of the other materials, in that for this material nearly all the projectile energy appeared as tensile strain energy in only the rear layer of the target. This result was a consequence of the high apparent strain observed in the fabric, and is not simply explained. Energy terms not evaluated, but which may be significant, are crushing and ejection of fibres for GRP composites and spalling of matrix phase with the Spectra composites. The work highlights many of the features which need to be accounted for in modelling ballistic perforation of fabric and fibre reinforced composite materials. © 1998 Chapman & Hall  相似文献   

20.
An analytical model has been developed in this paper for perforation of ceramic/multi-layer woven fabric targets by blunt projectiles. In previous Chocron–Galvez analytical model the semi-angle of ceramic conoid is constant and the strain rate effects are also neglected in the stress–strain behavior of the yarns and only strain energy absorbed by the yarns is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号