首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water and natural resource managers are concerned with evaluating how fish habitat and populations may respond to water diversions and small‐scale flow augmentations. We used two‐dimensional hydraulic models, habitat suitability curves and an individual‐based population viability model to assess whether flow augmentations of about 0.28–0.57 m3/s would create suitable habitat for federally listed native fish loach minnow Rhinichthys cobitis and spikedace Meda fulgida in a reach of the Gila River, New Mexico, and then examined how fish population viability may change under a variety of colonization and extinction scenarios. These simulations help to inform water management decisions in a reach of the Gila River where river diversions currently exist and new diversions and augmentations are being proposed. Our results suggest that the flow augmentations evaluated will result in small changes (on average across life stages, ?0.22% to 4.06%) in suitable habitat for loach minnow and spikedace depending on augmentation scenario and fish life stage. While these percent changes are small, they would result in a reduction in the dewatering of the river channel in a river reach where native fish abundance is thought to be low. Actual native fish responses to these habitat changes are unknown; however, these flow augmentations could potentially allow these native species to re‐colonize this river segment from upstream or downstream sources increasing species distribution and likely population viability. Maintaining viable populations of native fish in this river reach is dependent on complex factors including persistence of suitable habitat for multiple life stages, connectivity with other populations and minimizing risk of invasion from non‐native species. We recommend that these predictions from the habitat and population models be tested and verified in an adaptive management framework linking modelling, experimental management, monitoring and reassessment to inform water management decisions in the Gila River. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500‐m river reaches was sampled repeatedly with several techniques (boat‐mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non‐native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non‐native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species‐specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
General relationships between organisms and their habitat, consistent across spatial scales and regions, suggest the existence of repeatable ecological processes and are useful for the management of stream networks. From published data, we defined four guilds of European fish species with contrasting preferences for microhabitat hydraulics within stream reaches. At the scale of stream reaches and across 139 French sites (590 460 fishes sampled), we analysed how fish guild proportions were related to reach hydraulics (proportion of pools vs. riffles %POOL; median discharge by unit width Q50/W). The strongest correlations were observed between two fish guilds and %POOL (p < 0.001, r2 ≥ 0.41) and between one fish guild proportion and Q50/W (p < 0.001, r2 = 0.10). These reach–scale relationships were consistent across six large French basins, and consistent with the analyses made at the microhabitat scale. Therefore, microhabitat preferences for hydraulics are strong enough to generate consistent reach‐scale community responses to hydraulics across regions, despite the influence of other filters such as temperature, nutrient levels or history. The distribution of basic geomorphic features (pools, riffles) in streams and their modification (by dams, weirs and dikes) can modify the proportion of fish guilds by up to 80%, probably contributing to the long‐term decline of riffle‐dwelling species in Europe. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Fish and lampreys were sampled by electrofishing in the Pilica River tributaries (the Vistula catchment, Poland) in 1992–1994 and 2003–2005. The patterns in fish assemblages were recognized on the basis of fish biomass using Kohonen's self‐organizing map (SOM) technique, combined with the indicator values (IndVal) for assessment of associations of fish species with particular SOM regions (and respective environmental conditions). Although the fish samples were clustered mostly according to the stream features (size, regulation, and pollution), a weaker temporal gradient indicated a recovery of the ichthyofauna in some smaller streams. The larger tributaries served as sources of colonisers for both the Pilica and the smaller streams. The differences between SOM subclusters in the quality of the aquatic environment were effectively presented with certain biological measures, including the dominances of potentially large species and non‐psammophilous rheophils, which are proposed as good bioindicators. It is worth mentioning that some closely related species (ide and dace, silver bream and bream, golden loach and spined loach, and Ukrainian lamprey and brook lamprey) were significantly associated with different SOM regions (and respective environmental conditions), perhaps in this way avoiding competition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Reservoirs are important components of modern aquatic ecosystems that have negative impacts on native aquatic biota both up‐ and downstream. We used a landscape‐scale geographic information system (GIS) approach to quantify the spatial effects of 19 large reservoirs on upstream prairie fish assemblages at 219 sites in Kansas, USA. We hypothesized that fish assemblage structure would vary with increasing distance from a reservoir and that the abundance of reservoir fishes in upstream reaches would decline with distance from a reservoir. Ordination of sample sites showed variation in fish assemblage structure occurred primarily across river basins and with stream size. Variance partitioning of a canonical ordination revealed that the pure effect of reservoir distance explained a small but significant (6%; F = 4.90, P = 0.002) amount of variability in fish assemblage structure in upstream reaches. Moreover, reservoir species catch per unit of effort (CPUE) significantly declined with distance from a reservoir, but only in fourth‐ and fifth‐ order streams (r2 = 0.32, P < 0.001 and r2 = 0.49, P < 0.001, respectively). Finally, a multivariate regression model including measures of stream size, catchment area, river basin, and reservoir distance successfully predicted CPUE of reservoir species at sites upstream of Kansas reservoirs (R2 = 0.45, P < 0.001). Overall, we found significant upstream effects of reservoirs on Kansas stream fish assemblages, which over time has led to a general homogenization of fish assemblages because of species introductions and extirpations. However, characteristic reservoir species are present throughout these systems and the importance of spatial proximity to reservoirs is probably dependent on the availability of suitable habitat (e.g. deep pools) in these tributary streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Golden perch Macquaria ambigua (Percichthyidae) and silver perch Bidyanus bidyanus (Terapontidae) are two potamodromous fish species of the Murray‐Darling river system in southeastern Australia. Ageing of these species using thin sections of the sagittal otoliths and validation with known‐age fish revealed: they live for over 26 years; male and female silver perch reach maturity at 3 and 5 years respectively; male and female golden perch reach maturity at 2 and 4 years respectively; both species exhibit sexual dimorphism with larger females; and growth varies (L silver perch 331–397 mm, golden perch 354–502 mm) among interconnected river systems. Longevity and opportunistic growth are characteristics that are well suited to the semi‐arid and temperate hydrology of this river system. A flood‐recruitment model for these two species, consistent with the ‘flood‐pulse concept’, has previously been assumed to be the main mechanism of recruitment. The model appeared appropriate for this large, low‐gradient river system with productive floodplains. However, in the middle reaches of the Murray River we found that golden perch recruitment was strong in non‐flood years and poor in flood years, and silver perch recruited in all years. These data do not preclude golden perch recruiting during floods as well, because downstream larval drift may have resulted in strong year‐classes being swept downstream of the sampling area during high flows. However, the recruitment models for these species need to be re‐evaluated to include within‐channel flows. Importantly, these flows can be manipulated by river regulation, unlike large floods, and therefore there is potential to enhance recruitment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In the context of river alteration, ecologists are asked to develop tools for the assessment of river integrity. Fish are known to be good bioindicators of the ecological condition of rivers. The Loire basin (France) is often considered as relatively little impacted compared to most other large European systems. But curiously, no study clearly addressed the question of fish assemblages patterns in this system in order to assess this status. Thus, we studied fish assemblages along the river network in the Loire basin using self‐organizing maps (SOMs) and we built a fish typology. Four basic assemblages were described and indicator species were identified. These assemblages varied in terms of individual species patterns as well as in terms of flow preference guilds and species richness. A discriminant analysis carried out on environmental variables revealed that they could be mainly determined by the slope, temperature and depth. Finally, fish assemblages were arrayed along a longitudinal gradient and roughly fitted the theoretical zonation expected in European rivers with the succession of brown trout (Salmo trutta fario), grayling (Thymallus thymallus), barbel (Barbus barbus) and bream (Abramis brama) zones in a downstream direction. Such patterns are still rarely observed in large European systems. However, the fish assemblage characteristic of the bream zone occurred more frequently than predicted on the basis of environmental variables. Such deviations between field data and theory suggest lotic‐to‐lentic shifts probably due to anthropogenic disturbances, especially in the grayling and barbel zones. In these river sectors, eurytopic and limnophilic species tend to replace rheophilic ones. Finally, the method used in this study to investigate fish patterns may be helpful to detect disturbances and may serve as a tool for the establishment of management plans. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Matching habitat typology and ecological assemblages can be useful in environmental management. We examined whether a priori defined riverine sections correspond with distinct fish assemblage types along the >2000 km long course of the Danube River, Europe. We also tested whether different sampling methods (i.e. day and night inshore electric fishing and offshore benthic trawling) provide consistent typological results. Analysis of assemblage similarities, indicator species analysis, non‐metric multidimensional scaling (NMDS) and k‐means analyses indicated that fish assemblages of the a priori defined Upper‐, Middle and Lower‐Danubian sections differed slightly, but within class variability was high. Although indicator species analysis showed that the Upper‐Danube belongs to the barbel (Barbus barbus) zone and the Middle‐ and Lower Danube belong to the bream (Abramis spp) zone, indicator values of the character species were generally low. The NMDS analyses suggested a weak gradient in assemblage structure along the course of the river with relatively high variability between neighbouring sites. K‐means analyses revealed that many sampling sites were in a different class than the a priori defined sections, and classifications at other group numbers did not lead to better classification outcome. Overall, the results do not suggest clearly distinguishable assemblage types with distinct boundaries in the potamal section of a great river. Nevertheless, the division of the potamon to smaller sections may explain some variability in fish assemblage structure, and could be used for bioassessment purposes. The study also shows the importance of multihabitat and multigear surveys in the typological assessment of great rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Hydroelectric dam operation can alter discharge and temperature patterns, impacting fish populations downstream. Previous investigations into the effects of river regulation on fish have focused on a single species within a river, yet different results among studies suggest the potential for species‐specific impacts. Here, we compare the impacts of two different hydropeaking regimes relative to a naturally flowing river on three ecologically important members of the forage fish community: longnose dace (Rhinichthys cataractae), slimy sculpin (Cottus cognatus) and trout‐perch (Percopsis omiscomaycus). Annual growth, estimated from otolith back‐calculations, was higher for each of the species in the regulated river relative to the naturally flowing river but did not differ between hydropeaking regimes. Condition was assessed using weight–length relationships and differed between rivers for each species, and between hydropeaking regimes for longnose dace and slimy sculpin. Survival of longnose dace and slimy sculpin was lower in the regulated river relative to the naturally flowing river, but comparable between rivers for trout‐perch. Annual growth was significantly related to mean summer discharge in the regulated river and to mean summer water temperature in the naturally flowing river for each species, and significantly different slopes among species indicate species‐specific responses to discharge and temperature alterations. This study demonstrates different biological responses among fish species within rivers to regulation in general, as well as to specific hydropeaking regimes. Future studies should focus on multiple species and multiple indicators of fish health to more fully characterize the impacts of river regulation on downstream fish communities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A long history of human alterations has affected the hydrology, physical habitat and water quality of most large river ecosystems. For more than a century, the Illinois River Waterway has been subject to channelization, damming, dredging, agricultural runoff and industrial and municipal effluents. This study evaluates how subsequent improvements in water quality have influenced long‐term changes in fish assemblages (1983–2010). We used five metrics to characterize the changes in fish assemblages. These metrics depicted shifts in the abundance and biomass of predatory and native fishes and species richness. Random forests (RF) and multiple linear regressions (MLRs) were used to relate the fish metrics to individual water quality and weather variables, with weather primarily used to account for inter‐annual variation. Model performances varied spatially and among fish metrics (0 ≤ pseudo‐R2 ≤ 0.73 for RF; 0.10 ≤ adjR2 ≤ 0.88 for MLR), but dissolved oxygen, un‐ionized ammonia and water clarity were often the best predictors. As the distance downstream of major pollutant sources increased, water quality became less important for explaining the changes in fish metrics and weather more important. These results indicate that water quality improvement largely accounts for fish assemblage recovery in the river system, although within some reaches we examined, weather had substantial compounding effects. The results could be used to prioritize water quality variables for long‐term monitoring and aid in predicting fish assemblage responses to future changes in water quality and climate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Geomorphologists are becoming increasingly interested in assessing morphologic structure and the diversity and/or complexity in morphologic structure across multiple scales within river systems. Unfortunately, many of our existing tools/variables are unsuitable for this task because they do not work across multiple scales or with changing discharges. Asymmetry is one variable that can be used to either include or exclude variations in flow stage and that can be assessed across multiple scales. Existing asymmetry indices, however, are limited in scope and largely focus on only cross‐sectional form. This study examines three existing asymmetry indices in the cross‐stream and downstream planes (for cross‐sections and riffle or pools, respectively) and develops nine new asymmetry indices that incorporate vertical, cross‐stream and downstream asymmetry for bed elements (e.g. riffle crests, pool troughs, riffle entrance slope), bedforms (pools or riffles) and bar units (pool‐riffle sequences) to investigate the utility of asymmetry as a measure of morphologic structure and diversity in fluvial systems. These 12 indices are field tested on the Embarras River in East Central Illinois, USA. The results of this study indicate that there is considerable morphologic diversity in bed elements, bedforms and bar units both at bankfull and also with varying flow stage. This multi‐scale, multidimensional, multistage variability in morphologic structure highlights the complexity of natural river systems. The highly variable nature of fluvial form within a reach has important implications for river restoration and/or assessments of physical habitat or river health especially in instances where pools, riffles or pool‐riffle sequences are the focus of study. In general the most robust and useful combination of asymmetry indices for most applications includes A* and AL1 for bed elements and bedforms and AL3, AW and AH for bar units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Sufficient genetic diversity can aid populations to persist in dynamic and fragmented environments. Understanding which mechanisms regulate genetic diversity of riverine fish can therefore advance current conservation strategies. The aim of this study was to investigate how habitat fragmentation interacted with population genetic diversity and individual behaviour of freshwater fish in large river systems. We studied a population of the long‐distance migratory, iteroparous freshwater salmonid European grayling (Thymallus thymallus) in south‐eastern Norway. Genotyping (n = 527) and radio‐tracking (n = 54) of adult fish throughout a 169‐km river section revealed three major migration barriers limiting gene flow and depleting genetic diversity upstream. Individuals from upstream areas that had dispersed downstream of barriers showed different movement behaviour than local genotypes. No natal philopatry was found in a large unfragmented river section, in contrast to strong fidelity to spawning tributaries known for individuals overwintering in lakes. We conclude that (a) upstream sub‐populations in fragmented rivers show less genetic variation, making it less likely for them to adapt to environmental changes; (b) fish with distinct genotypes in the same habitat can differ in their behaviour; (c) spawning site selection (natal philopatry) can differ between fish of the same species living in different habitats. Together this implies that habitat loss and fragmentation may differently affect individual fish of the same species if they live in different types or sections of habitat. Studying behaviour and genetic diversity of fish can unravel their complex ecology and help minimize human impact.  相似文献   

14.
The mesoscale (100–102 m) of river habitats has been identified as the scale that simultaneously offers insights into ecological structure and falls within the practical bounds of river management. Mesoscale habitat (mesohabitat) classifications for relatively large rivers, however, are underdeveloped compared with those produced for smaller streams. Approaches to habitat modelling have traditionally focused on individual species or proceeded on a species‐by‐species basis. This is particularly problematic in larger rivers where the effects of biological interactions are more complex and intense. Community‐level approaches can rapidly model many species simultaneously, thereby integrating the effects of biological interactions while providing information on the relative importance of environmental variables in structuring the community. One such community‐level approach, multivariate regression trees, was applied in order to determine the relative influences of abiotic factors on fish assemblages within shoreline mesohabitats of San Pedro River, Chile, and to define reference communities prior to the planned construction of a hydroelectric power plant. Flow depth, bank materials and the availability of riparian and instream cover, including woody debris, were the main variables driving differences between the assemblages. Species strongly indicative of distinctive mesohabitat types included the endemic Galaxias platei. Among other outcomes, the results provide information on the impact of non‐native salmonids on river‐dwelling Galaxias platei, suggesting a degree of habitat segregation between these taxa based on flow depth. The results support the use of the mesohabitat concept in large, relatively pristine river systems, and they represent a basis for assessing the impact of any future hydroelectric power plant construction and operation. By combing community classifications with simple sets of environmental rules, the multivariate regression trees produced can be used to predict the community structure of any mesohabitat along the reach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Low‐flow events can reduce food availability and decrease the feeding niche of consumers within rivers. Stable carbon (δ13C) and nitrogen (δ15N) isotope and stomach content analyses were employed to evaluate resource use and overlap between fish species in a natural and regulated river in normal and low‐flow years, with the use of multiple methodological approaches providing the best means of understanding short‐term and long‐term observations on fish feeding and resource overlap under changing flow conditions. Diet analyses generally indicated significant inter‐specific differences in the diets of key fish species within rivers and similarities in resource use between rivers. In comparison with fish from the natural river, fish from the regulated river had lower and less inter‐annually variable δ13C values. In the natural river, there was a significant reduction and increase, respectively, in δ13C and δ15N variation in the low‐flow year. Intra‐annual or inter‐annual differences in trophic niche area were not apparent in the regulated river, whereas within the natural river, intra‐annual and inter‐annual differences in trophic niche were found. Resource overlap between key fish species was also higher in the low‐flow year and lower in the spring and higher in the summer as a result of differences in flow. Resource overlap was also higher between rivers in the low‐flow year. High resource overlap between rivers during decreased summer flow indicates a strong effect of flow on river organisms, where both fish and their invertebrate prey resources are concerned. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In river systems, high‐head dams may increase the distance‐decay of fish community similarity by creating nearly impermeable dispersal barriers to certain species from upstream reaches. Substantial evidence suggests that migratory species are impacted by dams, and most previous studies in stream/river networks have focused on small streams and headwaters. Here, we assess whether a high‐head dam (Lock and Dam 19; LD 19) on a large river, the Upper Mississippi River (UMR), substantially alters fish community structure relative to variability expected to occur independent of the dam's effect as a fish dispersal barrier. Using fish catch per unit effort data, we modelled the distance‐decay function for the UMR fish community and then estimated the similarity that would be expected to occur across LD19 and compared it with measured similarity. Measured similarity in the fish community above and below LD19 was close to the expected value based on the distance‐decay function, suggesting LD19 does not create an abrupt transition in the fish community. Although some migratory fish species no longer occur above LD19 (e.g., skipjack herring, Alosa chrysochloris), these species do not occur in high abundance below the dam and so do not drive variation in fish community structure. Instead, much of the variation in species structure is driven by the loss/gain of species across the latitudinal gradient. Lock and Dam 19 does not appear to be a clear transition point in the river's fish community, although it may function as a meaningful barrier for particular species (e.g., invasive species) and warrant future attention from a management perspective.  相似文献   

17.
Two morphologically distinct moss communities were found in the River Suldalslågen. The liver moss community consists of species which form a dense mat on the bottom, while the river moss (Fontinalis) community forms long tufts. Moss growth has increased since hydropower regulations due to reduced floods and increased winter flows. Increased moss cover affects the bottom structure, as well as intra‐gravel and near‐bottom hydraulics. We studied densities of juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) by electrofishing and habitat selection by direct underwater observation, in areas with natural moss cover compared with areas where mosses were experimentally removed. Areas with dense mats of liver mosses held lower densities of young of year (YoY) and older salmon parr than areas where liver moss had been removed. No differences in densities of YoY salmon were found between areas with and without Fontinalis. For older salmon, parr results were inconclusive. In some samples more and in others fewer fish were found in areas with Fontinalis moss removed. For trout, densities were higher in areas with Fontinalis, while results for liver moss were inconclusive. No major differences were found with regard to microhabitat selection between areas with and without river moss, suggesting that habitat quality in these areas was similar during summer, except with respect to substrate. Salmon held more exposed positions in areas without liver moss, but this is mainly attributed to different habitat availabilities. It is concluded that the relative increase in liver mosses in the River Suldalslågen has a negative impact on juvenile Atlantic salmon fish density. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The occurrence of aquatic plants was analysed in a medium‐sized river in Greece. There were three objectives. The first was to examine the macrophyte assemblage structure along the river. The identification and hierarchical structure of aquatic plant assemblages were analyzed using Bray–Curtis analysis. Taxa primarily responsible for the differences among the assemblages were identified using similarity percentage analysis. The second objective was to investigate whether habitat features have greater impact on aquatic plant assemblages than chemical parameters. Partial canonical correspondence analysis was used for partitioning the total variation of the biological response. The third objective was to further explore the relationships between hydrophytes (water‐supported plants) richness and water quality using linear regression model. The results showed that from the 86 macrophyte taxa recorded, the 25 were found to be primarily responsible for the differences among the macrophytic assemblages. Both geomorphological and physicochemical variables proved to be significant in the Monte Carlo permutation test. The 14 out of 19 geomorphological variables were statistically significant (p<0.004) and included in the final canonical correspondence analysis model. From physicochemical variables, temperature, conductivity and water velocity were significant predictors of species distribution. Total macrophyte variation was divided into portions: (i) explained exclusively by geomorphological variables (34%); (ii) explained exclusively by physicochemical variables (3%); (iii) explained by both variables (52%); and (iv) unexplained (4%). Partitioning clearly revealed that macrophyte assemblage structure was strongly associated with geomorphological features. Τhe results indicated that hardness, DO and chl‐a play a more prominent role in hydrophyte species richness at community level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Fishways for salmon in temperate rivers have often been successful, but salmonid‐type fishways for non‐salmonid species in tropical and subtropical rivers have frequently failed. This study assessed the effectiveness of modifying a salmonid‐type pool‐and‐weir fishway into a vertical‐slot design on a tidal barrage on the subtropical Fitzroy River, in Queensland, north‐eastern Australia. In 38 paired samples of the top and bottom of the fishway, over 16 months, 29 fish species and over 23 000 fish were collected at a maximum rate of 3400 per day. This study shows much greater potential for success with a vertical‐slot fishway as relatively few fish negotiated the original pool‐and‐weir design. Common species using the vertical‐slot fishway included blue‐catfish (Arius graeffei [Ariidae]), bony herring (Nematalosa erebi [Clupeidae]), striped mullet (Mugil cephalus [Mugilidae]), barramundi (Lates calcarifer [Centropomidae]), and long‐finned eels (Anguilla reinhardtii [Anguillidae]). Freshwater shrimp (Macrobrachium australiense [Palaemonidae]), juvenile crabs (Varuna litterata [Grapsidae]) and long‐finned elvers did not ascend the full length of the fishway and specific fishways for these species are recommended. Fish between 25 and 640 mm in length ascended the fishway, although the passage of smaller size classes of immature fish was restricted and this may be important for the sustainability of these migratory populations. The barramundi (200–640 mm) which ascended the fishway were all immature fish. However, during a period of low river flows enlarging the width of the vertical‐slot from 0.15 to 0.45 m only encouraged a small number of larger fish (890 mm maximum length) to enter. The strong diel movement patterns of many species will need to be considered in future fishway design. Blue‐catfish could ascend the fishway in 2 h, but many fish remained in the fishway and this behaviour may cause crowding and a reduction in fishway capacity. Further work is needed to assess the proportion of fish finding the fishway entrance. However, the findings suggest that vertical‐slot fishways with lower water velocities and turbulence than salmonid fishways have great potential to pass the diverse migratory fish fauna of subtropical and tropical rivers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Recolonization by native species following reintroduction can affect resident species through a variety of processes. We examined the effects of natural recolonization by coho salmon Oncorhynchus kisutch on sculpin (Cottus rhotus and Cottus gulosus), small benthic fishes, in a small forest stream in Western Washington, USA. Provision fish passage around a small dam allowed coho access to habitat, which had been inaccessible for over 100 years. We found that density (g m?2 and number m?2) was unchanged, and body condition (the slope of the relationship between length and weight) of sculpin tended to increase from before relative to a 5‐year period following recolonization. The proportion of sculpin comprising the total fish assemblage decreased after coho colonization relative to before but remained stable for a 5‐year period after coho reintroduction, whereas coho density increased over fivefold. Additionally, we used Akaike's information criteria to evaluate the relative importance of physical and biological variables to predict sculpin density in pool habitats during the initial coho recolonization period. Physical microhabitat variables had little support for predicting sculpin density, whereas there was a significant support for stream temperature; cutthroat trout (Oncorhynchus clarkii) density and year were the most important predictors of sculpin density. Coho density was not significant in any model. Our results indicate coho introduction and subsequent recolonization have to date had minimal individual or population level effects on sculpin, therefore demonstrating that species reintroductions into their native range can have no measurable effect on resident organisms. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号