首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
For modern diesel engines, variable geometry turbocharger (VGT) is used to boost engine power output. In addition, exhaust gas recirculation (EGR) is utilized to reduce engine out NOx emission. To realize these functions, a multivariable control system needs to control both VGT and EGR valve to deliver desired intake manifold (or boost) pressure, and desired EGR flow rate. This two-input and two-output system is nonlinear with cross-couplings between the boost and EGR responses to the input actuators, the system parameters are varying with different engine operating conditions. This paper proposes a closed loop design of a multivariable VGT/EGR control system for a turbocharged diesel engine. The control system is synthesized based on quantitative feedback theory to maintain robust stability and performance via sequential MIMO loop shaping in the frequency domain. Experiment results are included from a turbocharged diesel engine to show the effectiveness of the proposed control design.  相似文献   

2.
针对废气再循环(EGR)与可变几何截面涡轮增压(VGT)的柴油发动机,作者联合考虑其燃油动力转速调节回路与气体回路,提出了内外双环稳定动态反馈的控制策略.其中,内环回路是利用Lyapunov函数设计的控制器,控制燃油质量流量来跟踪柴油发动机转速;外环回路则设计EGR–VGT控制器,跟踪气体回路的进排气歧管压力及压气机空气质量流量,并克服了柴油发动机建模中的不稳定零动态问题.同时,研究了气体流量与EGR和VGT阀门开度之间的关系,通过设计流量开度转换模块实现了两者控制的转换.最后,通过专业发动机软件AMESim与仿真软件MATLAB/Simulink的联合仿真试验,验证了该控制策略对柴油发动机燃油动力转速调节与气体回路控制的有效性.  相似文献   

3.
This paper presents a nonlinear observer-based control design approach for gasoline engines equipped with exhaust gas recirculation (EGR) system. A mean value engine model is designed for control which includes both the intake manifold and exhaust manifold dynamic focused on gas mass flows. Then, the nonlinear feedback controller based on the developed model is designed for the state tracking control, and the stability of the close loop system is guaranteed by a constructed Lyapunov function. Since the exhaust manifold pressure is usually unmeasurable in the production engines, a nonlinear observer-based feedback controller is proposed by using standard sensors equipped on the engine, and the asymptotic stability of the both observer dynamic system and control dynamic system are guaranteed with Lyapunov design assisted by the detail analysis of the model. The experimental validations show that the observer-based nonlinear feedback controller is able to regulate the intake pressure and exhaust pressure state to the desired values during both the steady-state and transient conditions quickly by only using the standard sensors.  相似文献   

4.
A unified fault detection and isolation (FDI) and fault tolerant control (FTC) strategy for the diesel engine's air management system has been formulated. Diesel engines need to comply with the strict emission requirements for which they are equipped with specialized sub‐systems for the purpose, such as the variable geometry turbo (VGT) charger and exhaust gas recirculation (EGR). Hardware‐based controls tend to make the system more complex and prone to structured and unstructured faults. This calls for an advanced FTC technique that can ensure desired level of emissions even in the presence of minor system malfunctions. The scheme proposed in this paper detects, isolates and estimates the structured faults and minimizes their effects by re‐positioning the actuators using integral sliding mode (ISM) control. Estimating the magnitude of structured faults help to reduce the ISM controller gains, eventually reducing the chattering. The stability of the system is analyzed using Lyapunov stability criterion. Simulations have been performed using fully validated industrial scale model of a diesel engine to elucidate the effectiveness of our scheme.  相似文献   

5.
Neural Computing and Applications - This study includes the design of an autonomous exhaust gas recirculation (EGR) cooling system and implementation of the system on diesel engine by using deep...  相似文献   

6.
Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10% -25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.  相似文献   

7.
8.
集气管压力的稳定影响焦炭的质量和焦炉的寿命。提出了一种分层控制方法,将整个焦炉集气管压力控制系统分成三个层次来处理,即模型构建层、回路控制层、协调控制层。针对解耦后的单变量单回路系统,设计了伪微分反馈(PDF)控制器和PI控制器,并分别在SIMULINK环境下进行了系统仿真。结果表明,PDF控制器控制效果优于PI控制器,更好地解决了集气管压力系统在扰动情况下出现的波动、超调、反应慢等现象。保证了系统的稳定性和工业生产的正常运行。  相似文献   

9.
1-D engine simulation models are widely used for the analysis and verification of air-path design concepts to assess performance and therefore determine suitable hardware. The transient response is a key driver in the selection process which in most cases requires closed loop control of the model to ensure operation within prescribed physical limits and tracking of reference signals. Since the controller effects the system performance a systematic procedure which achieves close-to-optimal performance is desired, if the full potential of a given hardware configuration is to be properly assessed. For this purpose a particular implementation of Model Predictive Control (MPC) based on a corresponding Mean Value Engine Model (MVEM) is reported here. The MVEM is linearised on-line at each operating point to allow for the formulation of quadratic programming (QP) problems, which are solved as the part of the proposed MPC algorithm. The MPC output is used to control a 1-D engine model. The closed loop performance of such a system is benchmarked against the solution of a related optimal control problem (OCP). The system is also tested for operation at high altitude conditions to demonstrate the ability of the controller to respect specified physical constraints. As an example this study is focused on the transient response of a light-duty automotive Diesel engine. For the cases examined the proposed controller design gives a more systematic procedure than other ad hoc approaches that require considerable tuning effort.  相似文献   

10.
电控EGR阀是废气再循环技术中重要部件,主要包括步进电机式、电磁式和直流电机式,目前针对电控EGR阀测试系统研究尚不充分;为了实现对电控EGR阀各项技术指标的测试,研制了一套电控EGR阀综合性能测试系统;系统由驱动单元、控制单元、测试单元组成;驱动单元以电控EGR阀驱动器为驱动核心,控制单元以可编程控制器为控制核心,测试单元由各项指标的测试模块组成;通过对各项技术指标测试工艺流程设计,系统实现了对电控EGR阀流量特性、内漏性能、响应时间和阀内位置感应器性能的自动测试;实验结果表明,该系统稳定可靠,各项参数的机器能力指数Cmk均超过1.67,满足技术要求;系统提供了一种针对电控EGR阀综合性能的测试方案,并成功应用于某企业电控EGR阀生产测试车间。  相似文献   

11.
针对传统采用不可控AC/DC变换器的混合动力轮胎式起重机系统,直流母线电压泵升导致的柴油发电机空转,造成能量浪费的问题。采用可控的有源前端变换器取代不可控的二极管整流,建立了AFE功率外环电流内环以及电压外环电流内环两种双环控制方法以实现柴油发电机输出功率的高效利用。运用matlab/simulink搭建了仿真模型,分别进行了锂电池混合动力RTG系统重载、轻载、空载下的动态仿真,仿真结果表明,两种双环控制方法均能实现锂电池混合动力RTG系统柴油发电机的恒功率输出,控制系统具有较好的动态性能。  相似文献   

12.
Homogeneous Charge Compression Ignition (HCCI) combines the characteristics of gasoline engine and diesel engine with high thermal efficiency and low emissions. However, since there is no direct initiator of combustion, it is difficult to control the combustion timing in HCCI engines under complex working conditions. In this paper, Neural Network Predictive Control (NNPC) for combustion timing of the HCCI engine is designed and implemented. First, the black box model based on Elman neural network is designed and developed to estimate the combustion timing. The fuel equivalence ratio, intake valve closing timing, intake manifold temperature, intake manifold gas pressure, and engine speed are chosen as the system inputs. Then, a NNPC controller is designed to control combustion timing by controlling the intake valve closing timing. Simulation results show that the Elman neural network black box model is capable of estimating the HCCI engine combustion timing. In addition, regardless of whether the HCCI engine is in constant or complex condition, the designed NNPC controller is capable of keeping the combustion timing within the ideal range. In particular, under New European Driving Cycle (NEDC) working conditions, the maximum overshoot of the controller is 28.95% and the average error is 1.03 crank angle degree. It is concluded that the controller has good adaptability and robustness.  相似文献   

13.
魏萍  丁卯  左信  罗雄麟 《控制工程》2013,20(5):837-840
利用经典李对称理论,研究一类抛物型分布参数系统的边界控制问题,分别设计开环和闭环形式的边界控制律,实现系统状态的定态控制。借助于无穷小生成元作为分析工具,应用微分方程的不变性条件,确定系统经典李对称的具体表示形式,即其所对应的无穷小生成元表达式。之后,分别针对开环和闭环控制结构,设计出系统解析形式的边界控制条件。通过设定系统参数、初始条件和控制目标,开环和闭环边界控制都能实现设定的控制要求。相比较而言,开环控制的输出误差收敛速度较慢; 闭环控制收敛速度较快,不过入口附近有无法完全避免的超调现象。提供的研究结果,对于一类包含传导和对流特性的温度或浓度模型的定态控制问题有一定指导意义。  相似文献   

14.
The paper deals with verifications and validation of the control algorithm for simultaneous stabilization and trajectory tracking of underactuated nonlinear mechanical systems. A simplicity, universality, and effectiveness of the control law are shown on simulations to the both multibody second-order nonholonomic systems (a planar PPR manipulator and an inverted pendulum) and underactuated systems with forces/moments input coupling (a surface vessel). An experimental verification has been made on the novel pneumatically actuated slider-inverted pendulum with included friction effects. Also, an actuator compensator is constructed and implemented for this highly nonlinear experimental setup to avoid the increase of the system’s relative degree in the closed control loop, and to avoid the unnecessary time derivation of the system’s functions with non-differentiable Coulomb friction effects.  相似文献   

15.
Load frequency control (LFC) is a well-established issue in design and operation of power systems considering to the extension, restructuring, and complexity of the interconnected power systems and also the emergence utilization of renewable energy resources. This paper studies the frequency control of multi-area multi-source power system based on the importance of the LFC in the stability of the power system which includes various generation units of thermal, hydroelectric, wind, natural gas and diesel under the restructured environment. In this system, non-linear physical constraints, governor dead band (GDB) and generation rate constraint (GRC) are considered. In this paper, a new Predictive Functional Modified PID (PFMPID) controller is proposed that the effectiveness of this controller is verified compared to the traditional one. In order to optimize and demonstrate the superiority of the proposed control method, Grasshopper Optimization Algorithm (GOA) is proposed as a suitable solution. To further improve the performance of the under study system, the use of the Redox Flow Battery (RFB) energy storage unit has also been proposed. Since the operation evaluation of the proposed process is necessary in different system conditions, the performance of the proposed method is studied under various disturbances and simulation results are presented.  相似文献   

16.
The problem studied in this article is the control of a DOC (diesel oxidation catalyst) as used in aftertreatment systems of diesel vehicles. This system is inherently a distributed parameter system due to its elongated geometry where a gas stream is in contact with a spatially distributed catalyst. A first contribution is a model for the DOC system. It is obtained by successive simplifications justified either experimentally (from observations, estimates of orders of magnitude) or by an analysis of governing equations (through asymptotic developments and changes of variables). This model can reproduce the complex temperature response of DOC output to changes in input variables. In particular, the effects of gas velocity variations, inlet temperature and inlet hydrocarbons are well represented. A second contribution is a combination of algorithms (feedback, feedforward, and synchronization) designed to control the thermal phenomena in the DOC. Both contributions have been tested and validated experimentally. In conclusion, the outcomes are evaluated: using the approach presented in this article, it is possible to control, in conditions representative of vehicle driving conditions, the outlet temperature of the DOC within ±15 °C.  相似文献   

17.
This paper deals with a control design problem for a diesel engine air path system that has strong nonlinearity and requires multi-input and multi-output control to satisfy requirements and constraints. We focus on a neural network based approximation of nonlinear model predictive control (NMPC) for high-speed computation. Most neural approximation methods are verified only through simulation; further, the influence of approximation on the closed-loop performance has been not sufficiently discussed. In this study, we discuss this influence, and propose a new method to improve stability against degradation due to an approximation error. The control system is assembled using a neural network based controller, obtained by the proposed method, and an unscented Kalman filter. This system is verified both numerically and experimentally; the results demonstrate the capability of the proposed method to track the boost pressure, EGR rate, and pumping loss according to the reference values, and satisfy the constraints of compressor surge and choke. The high computation speed that can be achieved using a standard on-board ECU is also demonstrated using the approximated controller.  相似文献   

18.
In lean combustion mode, exhaust gas ratio (EGR) is a significant factor that affects fuel economy and combustion stability. A proper EGR level is beneficial for the fuel economy; however, the combustion stability (coefficient of variation (COV) in indicated mean effective pressure (IMEP)) deteriorated monotonously with increasing EGR. The aim of this study is to achieve a trade-off between the fuel economy and combustion stability by optimizing the EGR set-point. A cost function (J) is designed to represent the trade-off and reduce the calibration burden for optimal EGR at different engine operating conditions. An extremum-seeking (ES) algorithm is adopted to search for the extreme value of J and obtain the optimal EGR at an operating point. Finally, a map of optimal EGR set-value is designed and experimentally validated on a real driving cycle.  相似文献   

19.
《Control Engineering Practice》2009,17(12):1432-1439
Air path control of a spark ignition engine without an EGR loop, equipped with variable-valve-timing (VVT) actuators, is addressed in this paper. VVT devices are used to produce internal exhaust gas recirculation, providing beneficial effects in terms of fuel consumption and pollutant emissions reduction. However, VVT actuators affect the fresh air charge in the cylinders. This has an impact on the torque output (leading to driveability problems) and on the fuel/air ratio (FAR) (leading to pollution peaks). To compensate for these undesirable effects, a new approach is proposed. Supportive experimental results show the relevance of this approach.  相似文献   

20.
本文首先阐述柴油机电控喷油技术国内外发展的背景和现状,接着介绍柴油机电控喷油系统的基本组成和控制原理,简要介绍了其分类。根据柴油机电控系统的组成和控制原理以及国内外现状,针对国内外现有柴油机电控技术存在的几个问题,探讨将来柴油机电控技术的发展方向和前景。并综合得出未来最具前景的系统为电控高压共轨式喷油系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号