首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Wear》2007,262(1-2):220-224
PEEK is a high strength engineering thermoplastic that suffers from a high friction coefficient and a friction induced wear mode. Past studies with 10 μm PEEK and PTFE powders resulted in composite solid lubricant that (at the optimal composition) had a wear rate of k = 2 × 10−9 mm3/Nm with a friction coefficient of μ = 0.12. A compositional grading of PEEK and PTFE is implemented in this study to create a bulk composite with the functional requirements of component strength, stiffness and wear resistance while providing solid lubrication at the sliding interface. The tribological performances of three functionally graded PEEK components were evaluated on linear reciprocating, rotating pin-on-disk and thrust washer tribometers. Wear rates comparable to samples of the bulk solid lubricant and comparable or improved frictional performance were achieved by compositionally grading the near surface region of PEEK components.  相似文献   

2.
Myo Minn  Sujeet K. Sinha 《Wear》2012,274(1-2):528-535
Poly(etheretherketone) (PEEK) is a high strength and high temperature engineering polymer. However, its tribological performance is not very good in its pure form unless fillers or fibers are added to form composites. As polymers are often used for applications where traditional oil based lubrication may become an issue, water-based lubrication is desirable. This paper explores the lubrication performance of a natural fibrinolytic enzyme, nattokinase, found in fermented soybean (natto) in the aqueous solution. Pins of PEEK were slid against a steel disk in a pin-on-disk tester with the aqueous lubrication. The counterface disk material was a tool steel (Ra=0.37 μm). Tests were conducted at a rotational speed of 100 rpm and a normal load of 80 N. For comparison, tests were also conducted in NaCl solution. Nattokinase aqueous solution provides a coefficient of friction of 0.2 between PEEK and steel as compared to 0.3–0.35 for dry condition. The specific wear rates of PEEK for dry, deionized water, NaCl solution and aqueous nattokinase solution conditions were 10.5×10?6, 51.6×10?6, 228×10?6 and 8.8×10?6 mm3/N m, respectively. The fibrinolytic nattokinase enzyme provides lubricity with alkalinity reducing corrosion and eventually reducing wear.  相似文献   

3.
Guoliang Pan  Qiang Guo  Weidong Zhang  Aiguo Tian 《Wear》2009,266(11-12):1208-1215
The influence of diameter and content of Al2O3 particles on the tribological behaviors under fretting wear mode was investigated. The surface of PEEK composite and steel ball were examined by SEM and EDS, to identify the topography of wear scar and analyze the distribution of chemical elements in the friction counterparts, respectively. It can be found that the filling of Al2O3 powder improves the fretting wear resistance of PEEK composite. With the increase of Al2O3 diameter, the area of wear scar on specimen increases first and decreases afterward. However, the wear of composites increases monotonically with increasing Al2O3 content. Although the filling of 10 wt.% and 200 nm PTFE powder in PEEK makes the lowest wear of all specimens, no synergistic effect was found when Al2O3 and PTFE were filled into PEEK composite together. For the friction pair of PEEK composite and steel ball, abrasive wear and adhesive wear dominate the fretting wear mechanism during fretting. Thermal effect plays a very important role during fretting; thus the property of temperature resistance for polymer material would affect the wear degree on the surface of wear scar.  相似文献   

4.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

5.
《Wear》2006,260(1-2):1-9
In the present work, we report the processing and properties of WC–6 wt.% ZrO2 composites, densified using the pressureless sintering route. The densification of the WC–ZrO2 composites was carried out in the temperature range of 1500–1700 °C with varying time (1–3 h) in vacuum. The experimental results indicate that significantly high hardness of 22–23 GPa and moderate fracture toughness of ∼5 MPa m1/2 can be obtained with 2 mol% Y-stabilized ZrO2 sinter-additive, sintered at 1600 °C for 3 h. Furthermore, the friction and wear behavior of optimized WC–ZrO2 composite is investigated on a fretting mode I wear tester. The tribological results reveal that a moderate coefficient of friction in the range from 0.15 to 0.5 can be achieved with the optimised composite. An important observation is that a transition in friction and wear with load is noted. The dominant mechanisms of material removal appear to be tribochemical wear and spalling of tribolayer.  相似文献   

6.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

7.
Nagaraj Chelliah  Satish V. Kailas 《Wear》2009,266(7-8):704-712
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms?1, normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s?1 in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms?1. This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 × 10?4 Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.  相似文献   

8.
In the present paper, friction and wear behaviors of a carbon fiber reinforced carbon–silicon carbide–titanium silicon carbide (C-SiC–Ti3SiC2) hybrid matrix composites fabricated by slurry infiltration and liquid silicon infiltration were studied for potential application as brake materials. The properties were compared with those of C/C-SiC composites. The composites containing Ti3SiC2 had not only higher friction stability coefficient but also much higher wear resistance than C/C-SiC composites. At an initial braking speed of 28 m/s under 0.8 MPa pressure, the weight wear rate of the composites containing 5 vol% Ti3SiC2 was 5.55 mg/cycle, which was only one-third of C/C-SiC composites. Self-lubricious film-like debris was formed on the composites containing Ti3SiC2, leading to the improvement of friction and wear properties. The effect of braking speed and braking pressure on the tribological properties of modified composites were investigated. The average friction coefficient was significantly affected by braking speed and braking pressure, but the wear rate was less affected by braking pressure.  相似文献   

9.
Four kinds of paper-based friction materials reinforced with carbon fibers of 100, 400, 600 and 800 μm were prepared by paper-making processes. Experimental results showed that the friction materials became porous with fiber length increasing. The friction torque curves were flat except the sample with 100 μm fibers. The wear rate of the sample with 100 μm fibers was only 1.40×10−5 mm3/J. Tiny debris and fine scratches formed in the worn surface were the reason for excellent wear resistance of friction pairs with 100 μm fibers. The friction pairs with 400, 600 and 800 μm fibers showed typically abrasive wear and fatigue wear.  相似文献   

10.
J. Paulo Davim  Rosária Cardoso 《Wear》2009,266(7-8):795-799
PEEK (poly-ether-ether-ketone) is a high performance engineering semicrystalline thermoplastic. PEEK has excellent tribological behaviour, which is optimised in the specially formulated tribological composite grade.This paper presents a comparative study of wear and friction on PEEK, PEEK-CF30 (wt%) and PEEK-GF30 (wt%) against steel, at long dry sliding. A plan of experiments was performed on a pin-on-disc machine, under the following conditions pv=2MPam/s (p = 8 MPa and v=0.25m/s; p = 2.68 MPa and v=0.75m/s) at the ambient temperature for a sliding distance of 15 km.PEEK-CF30 presented the lesser friction coefficient followed by PEEK. PEEK-GF30 presented the higher friction coefficient throughout all sliding distance. Both PEEK-CF30 and PEEK-GF30 have presented an excellent wear resistance relatively to PEEK while PEEK-CF30 presented the best tribological behaviour.  相似文献   

11.
Bronze–SiC–nickel coated graphite composites were fabricated by powder metallurgy technique (P/M). The tribological properties of composites sliding against AISI321 stainless steel pin were studied under sea water condition. The graphite is an effective solid lubricant in sea water environment. The SiC improved the hardness and tribological properties of composites. The friction coefficient of bronze–SiC–graphite composites increased with the increase of SiC. However, the specific wear rate of bronze–SiC–graphite composites decreased with increasing SiC. Bronze-2 wt% SiC-11.7 wt% nickel coated graphite composite showed the best tribological properties due to the synergistic effects of reinforcements.  相似文献   

12.
A.M. Al-Qutub  A. Khalil  N. Saheb  A.S. Hakeem 《Wear》2013,297(1-2):752-761
Friction and wear behavior of Al6061 monolithic alloy and 1 wt% CNTs reinforced Al6061 composite prepared through ball milling and spark plasma sintering was investigated. It was found that, under mild wear conditions, the composite displayed lower wear rate and friction coefficient compared to the monolithic alloy. However, for severe wear conditions, the composite displayed higher wear rate and friction coefficient compared to the monolithic alloy. Analysis of worn surfaces revealed that, at lower loads, abrasion was the dominant wear mechanism for both materials. At higher loads, adhesion was found to be dominant for the monolithic alloy while excessive sub-surface fracturing and delamination were mainly observed for the composite. Also, it was clarified that the friction and wear behavior of Al–CNT composites is largely influenced by the applied load and there exists a critical load beyond which CNTs could have a negative impact on the wear resistance of aluminum alloy.  相似文献   

13.
The tribological behavior of potassium titanate whiskers (PTW) reinforced polyetheretherketone (PEEK) composite has been investigated using the pin-on-disk configuration at different applied loads under water lubricated condition. It was found that the incorporation of the PTW into PEEK would achieve high wear resistance and low friction coefficient at low load. When the applied load increased up to 4 MPa, only the composite filled with 5 wt% PTW showed a significant improvement in the frictional reduction and wear resistance; on the contrary, a rapid increasing of the friction coefficient was observed for the composites of high PTW content. In the meantime, the severe wear loss occurred along with the sharply increasing temperature. This sudden deterioration of the wear resistance should be attributed to the change of the wear mechanism. The main wear mechanism of mild fatigue for the neat PEEK and mild abrasive wear for the 5 wt% PTW filled composite did not alter with the rising of the load. In this case, no transfer film could be detected on the counterpart surface. However, for the high PTW filled composites, the wear mechanism changed from the mild abrasive wear at low applied load to the severe fatigue wear at high load. Large amounts of wear debris were generated by the fatigue-delamination of the composite surface. And then, the debris served as third-body abrasives during the subsequent sliding process and the wear mechanism changed to severe abrasive wear. And unexpectedly, a thick and lumpy transfer film was formed on the counterface.  相似文献   

14.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

15.
《Wear》2006,260(7-8):915-918
Past studies with PTFE nanocomposites showed up to 600× improvements in wear resistance over unfilled PTFE with the addition of Al2O3 nanoparticles. Irregular shaped nanoparticles are used in this study to increase the mechanical entanglement of PTFE fibrils with the filler. The tribological properties of 1, 2, 5 and 10 wt.% filled samples are evaluated under a normal pressure and sliding speed of 6.3 MPa and 50.8 mm/s, respectively. The wear resistance was found to improve 3000× over unfilled PTFE with the addition of 1 wt.% nanoparticles. The 5 wt.% sample had the lowest steady state wear rate of K = 1.3 × 10−7 mm3/N m and the lowest steady friction coefficient with μ = 0.21.  相似文献   

16.
The tribological properties of NiCr-40 wt% Al2O3 (NC40A) cermet-based composites containing SrSO4 and other lubricant (graphite, MoS2 and Ag) against alumina ball were evaluated to identify their self-lubrication mechanisms from room temperature to 800 °C. The composites demonstrated distinct improvements in effectively reducing friction and wear, as compared to NC40A cermet. The best results were observed for NC40A–10SrSO4–10Ag composite, which exhibited satisfactory reproducibility of friction coefficient over a wide temperature range (200–800 °C) through high temperature cyclic friction tests due to the formation of synergistic lubricating films SrAl4O7, NiCr2O4 and Ag on the contact surface.  相似文献   

17.
Laser surface texturing (LST) was performed on the nickel-based composites by a Nd:YAG pulsed laser and the regular-arranged dimples with diameter of 150 μm were fabricated on their surfaces. The textured surfaces were smeared with molybdenum disulfide powder. The tribological properties of the textured and filled composites were investigated by carrying out sliding wear tests against an alumina ball as a counterface using a high temperature ball-on-disk tribometer. The tests were conducted at a sliding speed of 0.4 m/s and at normal loads ranging from 20–100 N and from room temperature to 600 °C. The friction coefficient of nickel-based composite textured and smeared with molybdenum disulfide was found to reduce from 0.18 to 0.1 at the temperature range from 200 to 400 °C. The texture with a dimple density of 7.1% was observed to prolong wear life of MoS2 film by more than four times in comparison to the texture with other dimple densities. The lubricious oxide particles stored in the dimples reduce friction coefficient at elevated temperatures and compensate for the extra lubricant owing to the degradation of MoS2 caused by its oxidation at high temperatures.  相似文献   

18.
《Wear》2007,262(1-2):121-129
The calcined petroleum coke (CPC), talcum powder (TP) and hexagonal boron nitride (h-BN) were used as the friction modifiers to improve the mechanical and tribological properties of phenolic resin-based friction composites (the resin matrix was coded as PHE). Thus the composites filled with the inorganic particulates of laminar structures were prepared by compression molding. The hardness and bending strength of the friction composites were measured. The tribological properties of the composites sliding against cast iron were evaluated using a pin-on-disc test rig. The morphologies of the worn surfaces of the composites and the transfer films on the counterpart cast iron disc were analyzed by means of scanning electron microscopy, and the elemental plane distributions on the transfer films were analyzed using energy-dispersive X-ray analysis (EDXA). It was found that the friction composites of different compositions showed different friction and wear behaviors, which was highly dependent on the volume fractions of the friction modifiers in the composites. Namely, the inclusion of CPC, h-BN, and TP at a volume fraction of 10% helped to greatly increase the bending strength and wear resistance of the composites, and in these cases the coefficients of friction for the composites were ranged within 0.43–0.47. In particular, the PHE-based composite with 10% h-BN had excellent friction stability at various testing conditions and showed the best wear resistance above 125 °C, which was attributed to the formation of a compact friction film (third-body-layer) on the rubbing surface of the composite and of a durable transfer film on the rubbing surface of the counterpart cast iron. The PHE-based composite with 10% CPC showed the best wear resistance below 125 °C, which was ascribed to the same reasons mentioned above. The different actions of various friction modifiers in terms of their effects on the friction and wear behavior of the phenolic resin-based friction composites could be related to their different bonding strengths with the resin matrix and their different abilities to form friction films (third-body-layer) on the surfaces of the composites and transfer films on the counterpart cast iron surface as well.  相似文献   

19.
Shibo Wang  Shirong Ge  Dekun Zhang 《Wear》2009,266(1-2):248-254
Mechanical properties and tribological behavior of nylon composites filled with zinc oxides were investigated in this paper. Different effects of ZnO particles and ZnO whiskers filling on the friction and wear behavior of nylon 1010 (PA1010) composites under dry friction condition were observed. The hardness, tensile strength and scratch coefficients of two kinds of nylon composites filled with the ZnO particles and whiskers were measured. Experimental results show that ZnO particles and ZnO whiskers improve the mechanical and tribological properties of nylon composites without affecting the crystallinity of nylon matrix. Hardness, tensile strength and scratch coefficient of composites are increased by the addition of ZnO particles and ZnO whiskers. Filler shape has little effect on the friction coefficients of nylon-based composites. These composites filled with particles and whiskers have nearly the same friction coefficients which locate between 0.4 and 0.45. The wear rates of composites are strongly dependent on filler shape and filler content. Particle-filled composites exhibit the lower wear rates than whisker-filled composites when the content of filler is lower than 10 wt.%. After that, the case is reversed. Ploughing and adhesion are the main wear mechanisms of composites with the addition of both ZnO particles and ZnO whiskers.  相似文献   

20.
《Wear》2002,252(11-12):870-879
Evolution of friction and wear of 42CrAlMo7 steels with different nitriding processes was investigated during boundary-lubricated rolling–sliding tests. The wear behaviour of nitrided steel with a thin compound layer (produced by plasma nitriding and by gas nitriding followed by oxidation) was characterised by the early removal of the compound layer, and the wear resistance was thus, given by the underlying diffusion layer. In the case of the material with a thick compound layer (produced by gas nitriding) wear was restricted to the compound layer. In this material, at low applied load (300 N, i.e. 485 MPa of Hertzian pressure, in this work), after the removal of the external porous layer wear tended to be negligible. At high applied load (1000 N, 890 MPa), on the other hand, the wear rate became higher than that of the diffusion layer. The friction behaviour was followed by determining the λ-factor evolution during each test. For a given λ-factor, the friction coefficients at 300 N were lower than at 1000 N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号