首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

2.
This paper presents the influence of aging the nitrile rubber, the most popular seal material, in various base fluids on sliding friction and abrasive wear. The lubricants used are synthetic esters, natural esters, different types of mineral base oils, poly-α-olefins and very high viscosity index oils. Friction has been studied for two directions of motion with respect to lay on the elastomer sample by using the SRV Optimol test machine. These findings show that as compared to all other lubricant formulations, ageing the elastomer in polyol ester leads to the maximum reduction of friction coefficient especially in perpendicular sliding to the initial lay on the surface. The abrasive wear studies were carried out by using a two-body abrasive wear tester against dry and lubricated elastomer. It was interesting to note that two-body abrasive wear of elastomeric material was higher during rubbing in presence of the fluids as compared to that in dry condition. Further, aging the elastomer in these base fluids especially in ester base fluids, results in more abrasive wear.  相似文献   

3.
Abstract

Wear behaviour of a zinc based alloy has been studied in partially lubricated condition. The test environment comprised a mixture of oil plus graphite/talc particles. The composition of the lubricant mixture was varied by changing the concentration of the solid lubricant particles suspended in the oil lubricant. Wear response of the alloy was noted to improve in terms of decreased wear rate, frictional heating and friction coefficient initially with the increasing concentration of the solid lubricant particles suspended in the oil lubricant. A critical content of the solid lubricant led to the best wear performance of the samples. This was followed by a reversal in the trend at concentrations of the solid lubricant particles in the lubricant mixture that were greater than the critical one. Wear behaviour of the alloy has been substantiated through the characteristics of wear surfaces, subsurface regions and debris particles.  相似文献   

4.
The role played by an externally added solid lubricant like graphite towards controlling the sliding wear behaviour of a zinc-based alloy has been examined in this study. The influence of dispersing hard silicon carbide particles in the alloy was also investigated by testing the composite in identical test conditions. The wear performance of the zinc-based alloy and its composite was compared with that of a gray cast iron. Wear tests were performed in oil lubricated environment. Composition of the lubricant was changed by adding various quantities of graphite (particles) to the oil. The study suggests that the wear response (in terms of wear rate, frictional heating and friction coefficient) of the samples improved in the presence of suspended graphite particles in the oil lubricant. However, this improvement was noticed up to a critical content of graphite particles only and the trend reversed at still higher graphite contents. The zinc-based (matrix) alloy revealed highest wear rate. Dispersoid silicon carbide particles showed a significant improvement in the wear performance of the matrix alloy. The cast iron performed in between the matrix alloy and composite. The frictional heating and friction coefficient were the highest for the composite while the cast iron and the matrix alloy showed a mixed response. Examinations of wear surfaces, subsurface regions and debris particles helped to substantiate the observed wear response of the samples.  相似文献   

5.
采用自行研制的往复摩擦磨损试验机,在法向载荷50 N、往复频率1 Hz、摩擦副接触形式为圆环外圆周/平面、初始线接触长度为6 mm、相对湿度为80%的试验条件下,研究了钛合金表面粗糙度、试验环境温度、试验延续时间、滑液成分等试验参数对UHMWPE/Ti6A14V摩擦副的往复摩擦磨损行为的影响.结果表明,这些试验参数均显著影响UHMWPE/Ti6A14V摩擦副的往复摩擦磨损行为;在环境温度20℃、25%小牛血清去离子水溶液边界润滑、180 min往复摩擦磨损试验条件下,当钛合金表面粗糙度由Ra0.04 μm增加至Ra0.06μm时,摩擦副的平均摩擦因数由0.033增加至0.096,UHMWPE试样磨损量由0.131 mm3,增加至0.149 mm3;在钛合金表面粗糙度为Ra0.06μm、25%小牛血清去离子水溶液边界润滑、180 min往复摩擦磨损试验条件下,当试验环境温度由10℃上升至37℃时,摩擦副的平均摩擦因数由0.135减少至0.077,UHMWPE试样磨损量由0.188 mm3减少至0.134 mm3.  相似文献   

6.
自补偿摩擦表面微观形貌分析   总被引:5,自引:0,他引:5  
莫易敏  邹岚 《机械科学与技术》1998,17(3):458-460,463
进行了钢-铜摩擦副的原始表面、常规润滑油和自补偿滑油润滑下的表面微观形貌测试和分析;对自补偿润滑下和常规润滑下钢、铜表面的粗糙度和表面轮廓特征参数进行了比较;研究了载荷、摩擦行程对自补偿润滑下钢、铜表面微观形貌的影响;得出了钢-铜摩擦副的磨损在一定范围内与载荷无关、其磨损不随摩擦行程线性增加、自补偿添加剂SW4更适应于重载工况和经过大的摩擦行程后仍起作用等结论。  相似文献   

7.
Tandon  K.N.  Feng  Z.C.  Li  X.Y. 《Tribology Letters》1999,6(2):113-122
Wear behavior of Al–Si alloys reinforced with SiC particulate has been investigated under dry and lubricated reciprocating sliding conditions using a ball-on-block wear test method. It was shown that in the dry sliding wear of the composite/steel ball system, the wear mechanism of the composite was predominantly adhesive. With further sliding motion, delamination and abrasive wear occurred as a result of fracture and debonding of the SiC particles. Under lubricated conditions, the wear rate of the composite was drastically reduced due to the presence of the lubricant, and a boundary lubrication condition existed and dominated the normal wear process. The debonding of the SiC particles from the matrix of the composite was a predominant factor in determining the wear loss of the composite in the boundary lubrication sliding process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A. Begelinger  A.W.J. De Gee 《Wear》1985,101(2):141-154
In a lubricated journal bearing, journal as well as bearing may suffer from wear if the lubricant contains hard abrasive particles. Wear may be particularly severe under conditions of boundary lubrication. Tests with 360° journal bearings show that, as far as friction and wear are concerned, the white metal SnSb8Cu4Cd and the bronze CuPb10Sn10 suffer equally from the addition of “air cleaner test dust” in the lubricant. In contrast, on addition of the abrasive, the composite process surface roughness of the bearing (which controls the ability of the bearing to re-establish thick film lubrication) remains virtually unaffected in the case of the white metal but increases considerably in the case of the bronze.The results of tests, performed with a block-on-ring method, do not agree well with those found with real journal bearings. Thus they are not suitable for qualifying materials for application in journal bearings lubricated with abrasive-containing lubricant.  相似文献   

9.
林吉曙  沈保罗 《机械》1997,24(5):13-17
对二种锌铝合金ZA-SiT HDZA在20号机油润滑条件下的摩擦磨损特性进行了研究。研究发现:该摩擦-润滑系统以边界润滑为主,且伴随有断续的、短暂的混合润滑或弹性流体润滑;磨擦磨损过程中存在着磨粒磨损、接触疲劳和粘着磨损3个磨损机制;二种锌合金在一定条件下具有优良的耐磨性能和减摩性能。研究结果还初步解释了这些试验现象。  相似文献   

10.
The investigation of lubricated friction and wear is an extended study. The aim of this study is to investigate the friction and wear characteristics of double fractionated palm oil (DFPO) as a biolubricant using a pin-on-disk tribotester under loads of 50 and 100 N with rotating speeds of 1, 2, 3, 4, and 5 ms?1 in a 1-h operation time. In this study, hydraulic oil and engine oil (SAE 40) were used as reference base lubricants. The experiment was conducted using aluminum pins and an SKD 11(alloy tool steel) disc lubricated with test lubricants. To investigate the wear and friction behavior, images of the worn surface were taken by optical microscopy. From the experimental results, the coefficient of friction (COF) rose when the sliding speed and load were high. In addition, the wear rate for a load of 100 N for all lubricants was almost always higher compared to lubricant with a load of 50 N. The results of this experiment reveal that the palm oil lubricant can be used as a lubricating oil, which would help to reduce the global demand for petroleum-based lubricants substantially.  相似文献   

11.
B.K. Prasad   《Wear》2006,260(11-12):1333-1341
This study pertains to the examination of sliding wear behaviour of a gray cast iron over a range of sliding speeds and applied pressures in dry and (oil and oil plus graphite) lubricated conditions. Wear properties characterized were wear rate and frictional heating. The cast iron revealed various forms and sizes of graphite particles in a matrix of pearlite and limited quantity of free ferrite. Different solidification patterns, as controlled by the chemical composition and/or carbon equivalent of the alloy and rate of cooling, were thought to be responsible for the varying morphology of the graphite phase formed in the material matrix. Occasional decohesion of graphite at ferrite/graphite interfacial regions was also observed.The wear rate of the cast iron increased with the speed and pressure of sliding due to increasing severity of wear condition. The specimens tended to lose proper contact with the disc at larger pressures when slid dry. This was attributed to severe cracking tendency of the material. On the contrary, specimen seizure was noticed in the oil and oil plus graphite lubricated conditions; the seizure resistance (pressure) decreased with sliding speed in presence of the lubricants. The wear rate versus pressure plots attained different slopes, i.e. the rate of increase in wear rate with pressure, depending on the test environment. One slope and inappreciable effect of pressure on wear rate were noticed due to substantial cracking tendency of the cast iron when tested in dry condition. In the oil lubricated condition also, virtually one slope was observed but it was higher than that in dry condition indicating greater sensitivity of wear rate towards the applied pressure. Also, the samples attained lower wear rate in oil than in dry condition in view of suppressed cracking tendency causing more stable lubricating film formation in presence of the oil lubricant. Addition of graphite particles to the oil lubricant caused a further reduction in wear rate because of the enhanced possibility of a more stable lubricant film formation due to smearing of the graphite particles. In this case, the slope of the wear rate versus pressure plots was the least in the intermediate range of pressures irrespective of the sliding speed owing to more stable lubricating film formation.A higher rate of temperature increase with test duration (intermediate sliding distance) in the beginning was attributed to the abrasive action of the hard debris generated through the fragmentation of the initially contacting asperities. A subsequently observed lower rate of increase at longer durations could be owing to the occurrence of mild wear condition in view of less stressing of the contacting asperities and increased stability of the lubricant film formed. Increase in the rate of frictional heating at still longer durations resulted from destabilization of the lubricating film.Frictional heating increased with applied pressure and sliding speed in view of increasing severity of wear condition. The rate of increase in frictional heating was low initially up to a specific pressure followed by a higher rate of increase at still larger pressures when the tests were conducted in oil plus graphite at both the sliding speeds and in the oil lubricant at the lower speed. A constant (high) rate of increase in frictional heating with pressure was noticed in the dry condition at both the sliding speeds and in the oil lubricant at the higher speed. Low rate of frictional heating with pressure was attributed to the occurrence of mild wear condition while a higher rate of frictional heating with pressure resulted from the occurrence of severe wear condition. As far as the influence of test environment on frictional heating is concerned, least frictional heat was generated in the oil plus graphite lubricant mixture while the maximum was noticed in dry condition, intermediate response of the samples being observed in oil. Formation of more stable lubricating film was thought to be responsible for lower frictional heating in the lubricated conditions; the presence of graphite in the oil lubricant increased the extent of lubricating film formation and stability of the film so formed.The wear response of the samples has been explained in terms of cracking tendency and lubricating effects of graphite, predominance of the counteracting effects of the two parameters over each other, and lubricating film formation by the external oil (plus graphite) lubricant on the sliding surfaces in specific test conditions. Characterization of wear surfaces, subsurface regions and debris particles of the material enabled to further substantiate the observed wear performance of the samples.  相似文献   

12.
采用TE66微磨粒磨损实验机对医用Ti-6Al-4V钛合金在不同摩擦副条件下的微磨粒磨损行为进行研究,考察滑行距离、载荷对其微磨粒磨损的影响,通过观察磨斑形貌,分析其磨损机制。研究结果表明:Ti-6Al-4V合金的磨损量随滑移距离和载荷增加而增加,磨损率则相反,并且硬度较高的Si3N4陶瓷球对合金造成的磨损量和磨损率均低于ZrO2陶瓷球;在不同摩擦副条件下,随着滑行距离和载荷的增加,Ti-6Al-4V合金的磨损机制均由三体磨损转变为二三体混合磨损,所不同的是与Si3N4陶瓷球对摩时合金的混合磨损区域要少于与ZrO2陶瓷球对摩时。  相似文献   

13.
X. Y. Li  H. Dong  W. Shi 《Wear》2001,250(1-12):553-560
Laboratory studies indicate that sliding Ti6Al4V against soft ultra-high molecular weight polyethylene (UHMWPE) pins produces severe damage to the titanium and the lubricant (water) changes colour suggesting chemical change. Blackening of periprosthetic tissues associated with titanium wear debris was also observed in clinical investigations. To increase scientific understanding of the mechanism involved, systematic characterisation work has been conducted employing grow discharge spectrometry (composition), scanning electron microscopy (wear morphology) and cross-sectional transmission electron microscopy (phase identification). Experimental results show that hydrogen may play an important role in promoting the formation of abrasive particles in the Ti6Al4V/UHMWPE tribosystem under water lubricated conditions. The observed abnormal wear of Ti6Al4V by soft UHMWPE can be to a large extent attributed to hydrogen evolution and formation of titanium hydride. Based on experimental results and discussion, a hydrogen-assisted wear mechanism is proposed.  相似文献   

14.
合成了含硼及锌润滑油添加剂——异辛氧基硼酸锌(ZnOB)。采用四球摩擦磨损试验机评价了其摩擦学性能。结果表明:在菜子油(RO)中加入异辛氧基硼酸锌以后,其承载能力明显提高,磨斑直径和摩擦因数均明显降低。从磨斑表面XPS分析结果可以推断,添加剂在摩擦过程中发生了摩擦化学降解反应,生成的产物ZnO和B2O3沉积在摩擦表面而起到润滑作用,从而改善抗磨减摩性能。  相似文献   

15.
B.C. Pai  P.K. Rohatgi  S. Venkatesh 《Wear》1974,30(1):117-125
Wear rates of several cast aluminium base alloys have been measured for lubricated rubbing against a rotating hardened steel disk. Wear rates of cast graphitic aluminium-silicon-nickel alloys were lower than those of pure Al, Al-Si and Al-Si-Ni alloys especially above pressures of 0.02 kg/mm2. The high wear resistance is attributed to the presence of graphite particles in the matrix which act as a solid lubricant. Additions of nickel alone to Al-Si alloys decrease the wear resistance. Graphitic aluminium-silicon-nickel alloys containing above 2% graphite can be mated unlubricated against the rotating steel disk after a one minute lubricated run-in period. Graphite particles may be potentially suitable to replace part of all of the tin in aluminium-tin bearing alloys.  相似文献   

16.
The present paper reports on work aimed at improving the abrasive wear resistance of surfaces lubricated with contaminated greases. The intended improvement can be achieved by reducing the effect of wear occurring between the abrasive particles and the rubbing surfaces. Different polymeric thickeners in powder form, such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinylchloride (PVC), polyamide (PA6) and polymethylmethacrylate (PMMA), were added to lithiumbased grease. The wear resistance and the coefficient of friction of cylindrical steel specimens were examined using a cross-pin test machine. The test machine provides concentrated contact under mixed lubrication conditions. Wear was measured on the stationary test specimen by the wear scar diameter, using an optical microscope, with an accuracy of ±1 μm. The frictional torque generated between the rubbing surfaces was measured using a full bridge strain gauge measuring cell attached to the stationary test specimen holder. The experiments were performed using clean and contaminated lubricating greases to which Air Cleaner Fine Test Dust (SCFTD) was added to the greases at a concentration of 10 wt.%. The results show that the effect of the abrasive contaminants can be reduced by the addition of polymeric powders. However, the addition of polymer to lubricating grease at relatively high concentration (more than 35 wt.%) has no effect on the antiwear action of the lithium grease. Further, the addition of polymeric powder with a particle size relatively greater than that of the contaminant can be considered as a useful method of eliminating the cutting process of the three-body abrasive mechanism introduced by the presence of the hard contaminant particles.  相似文献   

17.
This paper presents the results of studies on the wear performance of various composites of polyamide (nylon 6,6) reinforced with short carbon fibres and lubricated with a solid lubricant, PTFE, under adverse sliding conditions (abrasive wear). The effects of increasing amounts of fillers, fibre orientation, and experimental parameters such as load, and abrading particle size were investigated. The studies revealed that fillers that are very much suitable for adhesive wear applications are detrimental for the abrasive wear mode. Moreover, wear performance showed deterioration with increasing amount of filler concentration. The combination of heterogeneous fillers proved to be detrimental for wear performance. Efforts were made to correlate these investigations with appropriate mechanical properties. It was found that wear performance was greatly influenced by selected experimental parameters. Worn surfaces were examined with SEM to have better insight of the wear mechanism.  相似文献   

18.
化学镀Ni—B合金与有机钼对金属基体的双重保护   总被引:1,自引:0,他引:1  
采用表面镀层和润滑油中加入某些添加剂,使两者产生协同效应,是减少相对运动的零件表面间摩擦磨损的一项有效措施,本文研究了Ni-B合金镀层与油溶性有机钼的联系及摩擦磨损机理,摩擦磨损实验结果表明,Ni-B合金镀层与油溶性有机钼(MoDTP)有良好的协同效应,可大幅度提高运动副的减摩性和耐磨性,如Ni-P合金镀层经40℃热处理,油中加MoDTP比45钢基础油润滑下,耐磨性提高12.8倍,摩擦系数降低54  相似文献   

19.
The tribological properties of a well-studied powder metallurgy metal-matrix composite, i.e., 20 volume percent SiC whiskers in 2124-T6 Al alloy matrix, were measured for the three principal orthogonal orientations under dry and lubricated sliding contacts. The sliding wear mechanisms were identified through analyses of wear tracks and subsurface microstructure by scanning and transmission electron microscopy techniques. The results for sliding wear of this 2124 Al-SiC whisker composite indicate a much higher wear when dry than when lubricated, and a strong wear anistropy, which is correlated with the ureal fraction of SiC whiskers on the wear plane. SEM and TEM analyses show direct evidence of adhesive wear through plastic deformation for dry sliding and abrasive wear through plowing and polishing for lubricated sliding.  相似文献   

20.
Engine oil additives generally fall into one of two general categories: those that affect bulk oil properties and those that affect the surface properties of lubricated parts. Interactions among surface-active additives can lead to less-than-expected lubricant performance. Laboratory friction and wear test results are presented to illustrate the changes in lubricant performance that interactions among additives can cause. Some possible explanations are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号