首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The thermal performance of a cylindrical screen mesh heat pipe with hybrid nanofluid was experimentally investigated. The hybrid nanofluid was prepared by mixing Al2O3 and CuO nanoparticles with deionised water. The heat pipe was fabricated with straight copper tube of dimensions 300 mm length, 12.5 mm outer diameter and 1 mm thickness. The wick structure in the heat pipe was created by a three layer copper screen mesh of 100 mesh size. The heat input to the heat pipe was varied from 50 W to 250 W in five equal steps. The heat pipe was tested with three hybrid nanofluids made with combinations of Al2O3 and CuO nanoparticle in DI water (Al2O3 75%–CuO 25%, Al2O3 50%–CuO 50% and Al2O3 25%–CuO 75%). The tested hybrid nanofluids were made with 0.1% volume concentration of Al2O3 and CuO nanoparticle combination in deionised water. The results of the investigation showed that for the maximum heat load of 250 W considered in this work, the thermal resistance of the hybrid nanofluid with combination, Al2O3 25%–CuO 75%, showed 44.25% reduction compared to deionised water. The reduction in thermal resistance is due to the formation of porous coating on the wick surface which increases the wettability and surface roughness thereby creating more nucleation sites as seen in the SEM images. From the experimental investigation, it was observed that hybrid nanofluids are alternative to the conventional working fluids in heat pipes for electronic cooling applications.  相似文献   

2.
CuO–water nanofluids were prepared from non-spherical CuO nanoparticles by dispersing them in water through the aid of ultrasonication along with the use of Tiron as dispersant. Thermal conductivity enhancements of 13% and 44% have been obtained with 0.016 vol% CuO–water nanofluids at 28 °C and 55 °C respectively, which could be attributed to the high aspect ratio and Brownian motion of nanoparticles. Correlations have been developed to predict the influence of temperature (28–55 °C) and nanoparticles volume concentration (<0.016 vol%) on relative viscosity and thermal conductivity ratio. The results indicate the potential of this nanofluid for thermal management applications.  相似文献   

3.
In the present work a three-dimensional analysis is used to study the heat transfer characteristics of a double-tube helical heat exchangers using nanofluids under laminar flow conditions. CuO and TiO2 nanoparticles with diameters of 24 nm dispersed in water with volume concentrations of 0.5–3 vol.% are used as the working fluid. The mass flow rate of the nanofluid from the inner tube was kept and the mass flow rate of the water from the annulus was set at either half, full, or double the value. The variations of the nanofluids and water temperatures, heat transfer rates and heat transfer coefficients along inner and outer tubes are shown in the paper. Effects of nanoparticles concentration level and of the Dean number on the heat transfer rates and heat transfer coefficients are presented. The results show that for 2% CuO nanoparticles in water and same mass flow rate in inner tube and annulus, the heat transfer rate of the nanofluid was approximately 14% greater than of pure water and the heat transfer rate of water from annulus than through the inner tube flowing nanofluids was approximately 19% greater than for the case which through the inner and outer tubes flow water. The results also show that the convective heat transfer coefficients of the nanofluids and water increased with increasing of the mass flow rate and with the Dean number. The results have been validated by comparison of simulations with the data computed by empirical equations.  相似文献   

4.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

5.
Convective heat transfer and friction factor characteristics of water/propylene glycol (70:30% by volume) based CuO nanofluids flowing in a plain tube are investigated experimentally under constant heat flux boundary condition. Glycols are normally used as an anti-freezing heat transfer fluids in cold climatic regions. Nanofluids are prepared by dispersing 50 nm diameter of CuO nanoparticles in the base fluid. Experiments are conducted using CuO nanofluids with 0.025%, 0.1% and 0.5% volume concentration in the Reynolds numbers ranging from 1000 < Re < 10000 and considerable heat transfer enhancement in CuO nanofluids is observed. The effect of twisted tape inserts with twist ratios in the range of 0 < H/D < 15 on nanofluids is studied and further heat transfer augmentation is noticed. The increment in the pressure drop in the CuO nanofluids over the base fluid is negligible but the experimental results have shown a significant increment in the convective heat transfer coefficient of CuO nanofluids. The convective heat transfer coefficient increased up to 27.95% in the 0.5% CuO nanofluid in plain tube and with a twisted tape insert of H/D = 5 it is further increased to 76.06% over the base fluid at a particular Reynolds number. The friction factor enhancement of 10.08% is noticed and increased to 26.57% with the same twisted tape, when compared with the base fluid friction factor at the same Reynolds number. Based on the experimental data obtained, generalized regression equations are developed to predict Nusselt number and friction factor.  相似文献   

6.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

7.
The effect of using louvered strip inserts placed in a circular double pipe heat exchanger on the thermal and flow fields utilizing various types of nanofluids is studied numerically. The continuity, momentum and energy equations are solved by means of a finite volume method (FVM). The top and the bottom walls of the pipe are heated with a uniform heat flux boundary condition. Two different louvered strip insert arrangements (forward and backward) are used in this study with a Reynolds number range of 10,000 to 50,000. The effects of various louvered strip slant angles and pitches are also investigated. Four different types of nanoparticles, Al2O3, CuO, SiO2, and ZnO with different volume fractions in the range of 1% to 4% and different nanoparticle diameters in the range of 20 nm to 50 nm, dispersed in a base fluid (water) are used. The numerical results indicate that the forward louvered strip arrangement can promote the heat transfer by approximately 367% to 411% at the highest slant angle of α = 30° and lowest pitch of S = 30 mm. The maximal skin friction coefficient of the enhanced tube is around 10 times than that of the smooth tube and the value of performance evaluation criterion (PEC) lies in the range of 1.28–1.56. It is found that SiO2 nanofluid has the highest Nusselt number value, followed by Al2O3, ZnO, and CuO while pure water has the lowest Nusselt number. The results show that the Nusselt number increases with decreasing the nanoparticle diameter and it increases slightly with increasing the volume fraction of nanoparticles. The results reveal that there is a slight change in the skin friction coefficient when nanoparticle diameters of SiO2 nanofluid are varied.  相似文献   

8.
In this paper, a numerical investigation on heat transfer performance and flow fields of different nanofluids flows through elliptic annulus in a laminar and turbulent flow regimes. The three-dimensional continuity, Navier–Stokes and energy equations are solved by using finite volume method (FVM) and the SIMPLE algorithm scheme is applied to examine the effects of laminar and turbulent flow on heat transfer characteristics. This study evaluates the effects of four different types of nanoparticles, Al2O3, CuO, SiO2 and ZnO, with different volume fractions (0.5–4%) and diameters (25–80 nm) under constant heat flux boundary condition using water as a base fluid were used. The Reynolds number of laminar flow was in the range of 200  Re  1500, while for turbulent flow it was in the range of 4000  Re  10,000. The results have shown that SiO2–water nanofluid has the highest Nusselt number, followed by ZnO–water, CuO–water, Al2O3–water, and lastly pure water. The Nusselt number for all cases increases with the volume fraction but it decreases with the rise in the diameter of nanoparticles. In all configurations, the Nusselt number increases with Reynolds number. It is found that the glycerine–SiO2 shows the best heat transfer enhancement compared with other tested base fluids.  相似文献   

9.
The surfactants of sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) are used in multi-walled carbon nanotubes (MWCNT) aqueous solution respectively due to the hydrophobic nature of MWCNT. Thermal conductivities of nanofluid solutions are measured via the LAMBDA measuring system by transient hot wire method and compared as function of dispersing two different surfactants. MWCNT (hereinafter sometime referred to as CNTs) nanofluid gets a good dispersion and long time stability with both surfactants within 3/1 relative ratio mixture. However, the thermal conductivity of nanofluid decreases with increasing the concentration of both surfactants, and CNT nanofluid with SDBS exhibits better thermal conductivity than that with SDS dispersant. Finally the proper mixture ratio of CNT nanofluid with SDBS and pH value is examined and results show that 0.5 wt.% CNT nanofluids with 0.25 wt.% SDBS, at pH  9.0 condition display the best thermal performance which increases by 2.8% totally on thermal conductivity compared with that of base fluid distilled water (DW).  相似文献   

10.
Thermal conductivity of ethylene glycol and water mixture based Al2O3 and CuO nanofluids has been estimated experimentally at different volume concentrations and temperatures. The base fluid is a mixture of 50:50% (by weight) of ethylene glycol and water (EG/W). The particle concentration up to 0.8% and temperature range from 15 °C–50 °C were considered. Both the nanofluids are exhibiting higher thermal conductivity compared to base fluid. Under same volume concentration and temperature, CuO nanofluid thermal conductivity is more compared to Al2O3 nanofluid. A new correlation was developed based on the experimental data for the estimation of thermal conductivity of both the nanofluids.  相似文献   

11.
Experiments were conducted to investigate the effect of nanofluids on reflood heat transfer in a hot vertical tube. The nanofluids, which are produced by dispersing nano-sized particles in traditional base fluids such as water, ethylene glycol, and engine oil, are expected to have a reasonable potential to enhance a heat transfer. 0.1 volume fraction (%) Al2O3/water nanofluid was prepared by two-step method and 0.1 volume fraction (%) carbon nano colloid (CNC) was prepared by the process self-dispersing by carboxyl formed particle surface. Transmission electron microscopy (TEM) images are acquired to characterize the shape and size of Al2O3 and graphite nanoparticles. The dispersion behavior of nanofluids was investigated with zeta potential values. And then, the reflood tests have been performed using water and nanofluids. We have observed a more enhanced cooling performance in the case of the nanofluid reflood. Consequently, the cooling performance is enhanced more than 13 s and 20 s for Al2O3/water nanofluid and CNC.  相似文献   

12.
Laminar convective heat transfer and viscous pressure loss were investigated for alumina–water and zirconia–water nanofluids in a flow loop with a vertical heated tube. The heat transfer coefficients in the entrance region and in the fully developed region are found to increase by 17% and 27%, respectively, for alumina–water nanofluid at 6 vol % with respect to pure water. The zirconia–water nanofluid heat transfer coefficient increases by approximately 2% in the entrance region and 3% in the fully developed region at 1.32 vol %. The measured pressure loss for the nanofluids is in general much higher than for pure water. However, both the measured nanofluid heat transfer coefficient and pressure loss are in good agreement with the traditional model predictions for laminar flow, provided that the loading- and temperature-dependent thermophysical properties of the nanofluids are utilized in the evaluation of the dimensionless numbers. In other words, no abnormal heat transfer enhancement or pressure loss was observed within measurement errors.  相似文献   

13.
The convective heat transfer, friction factor and effectiveness of different volume concentrations of Fe3O4 nanofluid flow in an inner tube of double pipe heat exchanger with return bend has been estimated experimentally and turbulent flow conditions. The test section used in this study is of double pipe type in which the inner tube diameter is 0.019 m, the annulus tube diameter is 0.05 m and the total length of inner tube is 5 m. At a distance of 2.2 m from the inlet of the inner tube the return bend is provided. The hot Fe3O4 nanofluid flows through an inner tube, where as the cold water flows through an annulus tube. The volume concentrations of the nanoparticles used in this study are 0.005%, 0.01%, 0.03% and 0.06% with Reynolds number range from 15,000 to 30,000. Based on the results, the Nusselt number enhancement is 14.7% for 0.06% volume concentration of nanofluid flow in an inner tube of heat exchanger at a Reynolds number of 30,000 when compared to base fluid data; the pumping penalty of nanofluid is < 10%. The effectiveness of heat exchanger for water and nanofluid flow is explained in terms of number of transfer units (NTU) in order to estimate the overall performance of the double pipe heat exchanger. New correlations for Nusselt number and friction factor have been developed based on the experimental data.  相似文献   

14.
Laminar forced convection flow of nanofluids over a 2D horizontal backward facing step placed in a duct is numerically investigated using a finite volume method. A 5% volume fraction of nanoparticles is dispersed in a base fluid besides using various types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2. The duct has a step height of 4.8 mm, and an expansion ratio of 2. The Reynolds number was in the range of 50  Re  175. A primary recirculation region has been developed after the sudden expansion and it starts to change to become fully developed flow downstream of the reattachment point. The reattachment point is found to move downstream far from the step as Reynolds number increases. Nanofluid of SiO2 nanoparticles is observed to have the highest velocity among other nanofluids types, while nanofluid of Au nanoparticles has the lowest velocity. The static pressure and wall shear stress increase with Reynolds number and vice versa for skin friction coefficient.  相似文献   

15.
An experimental investigation on the convective heat transfer characteristics in the developing region of tube flow with constant heat flux is carried out with alumina–water nanofluids. The primary objective is to evaluate the effect of particle size on convective heat transfer in laminar developing region. Two particle sizes were used, one with average particle size off 45 nm and the other with 150 nm. It was observed that both nanofluids showed higher heat transfer characteristics than the base fluid and the nanofluid with 45 nm particles showed higher heat transfer coefficient than that with 150 nm particles. It was also observed that in the developing region, the heat transfer coefficients show higher enhancement than in the developed region. Based on the experimental results a correlation for heat transfer in the developing region has been proposed for the present range of nanofluids.  相似文献   

16.
Shell and tube heat exchanger is one of the most prevalent heat exchangers with a wide variety of industrial applications, i.e., power plants, chemical processes, marine industries, HVAC systems, cooling of hydraulic fluid and engine oil in heavy duty diesel engines and the like specifically where a need to heat or cool a large fluid volume exist and also higher-pressure use. In the present study, the effect of using Al2O3-water nanofluid on thermal performance of a commercial shell and tube heat exchanger with segmental baffles is assessed experimentally. For this purpose, Al2O3-gamma nanoparticles with 15 nm mean diameter (99.5% purity) and Sodium Dodecyl Benzene Sulphonate (SDBS) as surfactant are used to make aqueous Al2O3 nanofluid at three various volume fractions of nanoparticles (φ = 0.03, 0.14 and 0.3%). Indeed, in this paper the effect of some parameters of hot working fluid such as Reynolds number and volume concentration of nanoparticles on heat transfer characteristics, friction factor and thermal performance factor of a shell and tube heat exchanger under laminar flow regime is investigated. The results indicate a substantial increment in Nusselt number as well as the overall heat transfer coefficient of heat exchanger by enhancement of Reynolds number and it can be seen that, at a certain Reynolds number, heat transfer characteristics of heat exchanger increase as the nanoparticles volume concentration increases. Outcomes of the heat transfer evaluation demonstrate that applying nanofluids instead of base fluid lead to increment of Nusselt number up to 9.7, 20.9 and 29.8% at 0.03, 0.14 and 0.3 vol%, respectively. Likewise it is seen that at mentioned nanoparticles volume fractions, overall heat transfer coefficient of heat exchanger enhances around 5.4, 10.3 and 19.1%, respectively. In term of pressure drop, a little penalty is found by using nanofluid in the test section. Eventually a thermal performance assessment on the heat exchanger was conducted. According to the analysis results, utilizing nanofluid at minimum and maximum nanoparticles volume fractions (φ = 0.03 and 0.3%) results in average augmentation of around 6.5% and 18.9% in thermal performance factor (η) of the heat exchanger compared to the base liquid, respectively.  相似文献   

17.
The flow boiling heat transfer in a single microchannel was investigated with pure water and nanofluid as the working fluids. The microchannel had a size of 7500 × 100 × 250 μm, which was formed by two pyrex glasses and a silicon wafer. A platinum film with a length of 3500 μm and a width of 80 μm was deposited at the bottom channel surface, acting as the heater and temperature sensor. The nanofluid had a low weight concentration of 0.2%, consisting of de-ionized water and 40 nm Al2O3 nanoparticles. The nanoparticle deposition phenomenon was not observed. The boiling flow displays chaotic behavior due to the random bubble coalescence and breakup in the milliseconds timescale at moderate heat fluxes for pure water. The flow instability with large oscillation amplitudes and long cycle periods was observed with further increases in heat fluxes. The flow patterns are switched between the elongated bubbles and isolated miniature bubbles in the timescale of 100 s. It is found that nanofluid significantly mitigate the flow instability without nanoparticle deposition effect. The boiling flow is always stable or quasi-stable with significantly reduced pressure drop and enhanced heat transfer. Miniature bubbles are the major flow pattern in the microchannel. Elongated bubbles temporarily appear in the milliseconds timescale but isolated miniature bubbles will occupy the channel shortly. The decreased surface tension force acting on the bubble accounts for the smaller bubble size before the bubble departure. The inhibition of the dry patch development by the structural disjoining pressure, and the enlarged percentage of liquid film evaporation heat transfer region with nanoparticles, may account for the heat transfer enhancement compared to pure water.  相似文献   

18.
The engine coolant (water/ethylene glycol mixture type) becomes one of the most commonly used commercial fluids in cooling system of automobiles. However, the heat transfer coefficient of this kind of engine coolant is limited. The rapid developments of nanotechnology have led to emerging of a relatively new class of fluids called nanofluids, which could offer the enhanced thermal conductivity (TC) compared with the conventional coolants. The present study reports the new findings on the thermal conductivity and viscosity of car engine coolants based silicon carbide (SiC) nanofluids. The homogeneous and stable nanofluids with volume fraction up to 0.5 vol.% were prepared by the two-step method with the addition of surfactant (oleic acid). It was found that the thermal conductivity of nanofluids increased with the volume fraction and temperature (10–50 °C), and the highest thermal conductivity enhancement was found to be 53.81% for 0.5 vol.% nanofluid at 50 °C. In addition, the overall effectiveness of the current nanofluids (0.2 vol.%) was found to be ~ 1.6, which indicated that the car engine coolant-based SiC nanofluid prepared in this paper was better compared to the car engine coolant used as base liquid in this study.  相似文献   

19.
Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid has been investigated experimentally. Magnetic Fe3O4 nanoparticles were synthesized by chemical co-precipitation method and the nanofluids were prepared by dispersing nanoparticles into different base fluids like 20:80%, 40:60% and 60:40% by weight of the ethylene glycol and water mixture. Experiments were conducted in the temperature range from 20 °C to 60 °C and in the volume concentration range from 0.2% to 2.0%. Results indicate that the thermal conductivity increases with the increase of particle concentration and temperature. The thermal conductivity is enhanced by 46% at 2.0 vol.% of nanoparticles dispersed in 20:80% ethylene glycol and water mixture compared to other base fluids. The theoretical Hamilton–Crosser model failed to predict the thermal conductivity of the nanofluid with the effect of temperature. A new correlation is developed for the estimation of thermal conductivity of nanofluids based on the experimental data.  相似文献   

20.
A numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids inside a bottom-heated horizontal isosceles triangular cylinder is presented. Nano-sized copper oxide (CuO) particles suspended in water with two different volume fractions are considered. The thermophysical properties of water in the presence of nanoparticles are predicted using existing models, in which the effects of the Brownian motion of nanoparticles are taken into account. It is shown that pitchfork bifurcation appears for relatively high Grashof numbers and the critical Grashof number is found to be 5.60 × 104. The predicted development of convective flow of nanofluids is presented by means of the average Nusselt number over the bottom. Additionally, the flow development time towards a steady/quasi-steady state and the time-averaged Nusselt number are scaled with Grashof number. It is also shown that at constant Grashof numbers the time-averaged Nusselt number is lowered as more nanoparticles are added to the base liquid and will be overestimated if the Brownian motion effects are not considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号