首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effect of geometrical parameters on water flow and heat transfer characteristics in microchannels is numerically investigated for Reynolds number range of 100–1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The computational domain is taken as the entire heat sink including the inlet/outlet ports, wall plenums, and microchannels. Three different shapes of microchannel heat sinks are investigated in this study which are rectangular, trapezoidal, and triangular. The water flow field and heat transfer phenomena inside each shape of heated microchannels are examined with three different geometrical dimensions. Using the averaged fluid temperature and heat transfer coefficient in each shape of the heat sink to quantify the fluid flow and temperature distributions, it is found that better uniformities in heat transfer coefficient and temperature can be obtained in heat sinks having the smallest hydraulic diameter. It is also inferred that the heat sink having the smallest hydraulic diameter has better performance in terms of pressure drop and friction factor among other heat sinks studied.  相似文献   

2.
Single-phase liquid-cooling microchannels have received great attention to remove the gradually increased heat loads of heat sinks. Proper changes of the flow path and/or heat transfer surface can result in much better thermal performance of microchannel heat sinks. In this study, a kind of rectangular straight microchannel heat sink with bifurcation flow arrangement has been designed, and the corresponding laminar flow and heat transfer have been investigated numerically. Four different configurations are considered. The effects of the bifurcation ratio (the initial channel number over the bifurcating channel number) and length ratio (the channel length before bifurcation over the bifurcation channel length) on laminar heat transfer, pressure drop, and thermal resistance are considered and compared with those of the traditional straight microchannel heat sink without bifurcation flow. The overall thermal resistances subjected to inlet Reynolds number and pumping power are compared for the five microchannel heat sinks. Results show that the thermal performance of the microchannel heat sink with bifurcation flow is better than that of the corresponding straight microchannel heat sink. The heat sinks with larger bifurcation ratio and length ratio provide much better thermal performance. It is suggested to employ bifurcation flow path in the liquid-cooling microchannel heat sinks to improve the overall thermal performance by proper design of the bifurcation position and number of channels.  相似文献   

3.
Based on constructal theory, five different cases with multistage bifurcations are designed as well as one case without bifurcations, and the corresponding laminar fluid flow and thermal performance have been investigated numerically. All laminar fluid flow and heat transfer results are obtained using computation fluid dynamics, and a uniform wall heat flux thermal boundary condition is applied all heated surfaces. The inlet velocity ranges from 0.66 m/s to 1.6 m/s with the corresponding Reynolds number ranging from 230 to 560. The pressure, velocity, temperature distributions and averaged Nusselt number are presented. The overall thermal resistances versus inlet Reynolds number or pumping power are evaluated and compared for the six microchannel heat sinks. Numerical results show that the thermal performance of the microchannel heat sink with multistage bifurcation flow is better than that of the corresponding straight microchannel heat sink. The heat sink with a long bifurcation length in the first stage (Case 1A) is superior. The usage of multistage bifurcated plates in microchannel heat sink can reduce the overall thermal resistance and make the temperature of the heated surface more uniform (Case 3). It is suggested that proper design of the multistage bifurcations could be employed to improve the overall thermal performance of microchannel heat sinks and the maximum number of stages of bifurcations is recommended to be two. The study complements and extends previous works.  相似文献   

4.
This paper presents a numerical study on laminar forced convection of water in offset strip-fin microchannels network heat sinks for microelectronic cooling. A 3-dimensional mathematical model, consisting of N–S equations and energy conservation equation, with the conjugate heat transfer between the heat sink base and liquid coolant taken into consideration is solved numerically. The heat transfer and fluid flow characteristics in offset strip-fin microchannels heat sinks are analyzed and the heat transfer enhancement mechanism is discussed. Effects of geometric size of strip-fin on the heat sink performance are investigated. It is found that there is an optimal strip-fin size to minimize the pressure drop or pumping power on the constraint condition of maximum wall temperature, and this optimal size depends on the input heat flux and the maximum wall temperature. The results of this paper are helpful to the design and optimization of offset strip-fin microchannel heat sinks for microelectronic cooling.  相似文献   

5.
The paper is focused on the investigation of fluid flow and heat transfer characteristics in a microchannel heat sink with offset fan-shaped reentrant cavities in sidewall. In contrast to the new microchannel heat sink, the corresponding conventional rectangular microchannel heat sink is chosen. The computational fluid dynamics is used to simulate the flow and heat transfer in the heat sinks. The steady, laminar flow and heat transfer equations are solved in a finite-volume method. The SIMPLEX method is used for the computations. The effects of flow rate and heat flux on pressure drop and heat transfer are presented. The results indicate that the microchannel heat sink with offset fan-shaped reentrant cavities in sidewall improved heat transfer performance with an acceptable pressure drop. The fluid flow and heat transfer mechanism of the new microchannel heat sink can attribute to the interaction of the increased heat transfer surface area, the redeveloping of the hydraulic and thermal boundary layers, the jet and throttling effects and the slipping over the reentrant cavities. The increased heat transfer surface area and the periodic thermal developing flow are responsible for the significant heat transfer enhancement. The jet and throttling effects enhance heat transfer, simultaneously increasing pressure drop. The slipping over the reentrant cavities reduces pressure drop, but drastically decreases heat transfer.  相似文献   

6.
Applications of microchannel heat sinks for dissipating heat loads have received great attention. Wavy channels are recognized to be an alternative cooling technology to enhance the heat transfer, and are successfully applied in heat exchangers. In this article, three kinds of liquid-cooling double-layer microchannel heat sinks, such as a rectangular straight microchannel heat sink, a parallel-flow wavy microchannel heat sink, and a counter-flow double-layer wavy microchannel heat sink, have been designed and the corresponding laminar flow and heat transfer have been investigated numerically. The effects of the wave amplitude and volumetric flow ratio on heat transfer, pressure drop, and thermal resistance are also observed. Results show that the counter-flow double-layer wavy microchannel heat sink is superior at a larger flow rate, and a more uniform temperature rise is achieved. For a slightly larger flow rate, the parallel flow layout shows better performance. In addition to the overall thermal resistance, other criteria for evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and similar results are obtained.  相似文献   

7.
Based on the Constructal Theory, parallel-flow and counterflow microchannels heat sinks with bifurcations are put forward to manage the temperature nonuniformity and further reduce the temperature of microchannel heat sinks bottom plates. Several models with different lengths of bifurcations are designed, and the corresponding laminar fluid flow and heat transfer of all models have been investigated through numerical simulations. The pressure, velocity, temperature distributions, and averaged Nusselt numbers are analyzed in details, and then the overall thermal resistances and overall thermal performance are compared. The results show that the thermal performance of counterflow microchannel heat sinks is better than that of parallel-flow heat sinks for the same geometry, and bifurcation can improve the thermal performance for all cases. It is suggested that a proper design of the length of bifurcation counterflow microchannel can be employed to improve the overall thermal performance of microchannel heat sinks. The study complements and extends previous works.  相似文献   

8.
Flow boiling experiments were conducted in straight and expanding microchannels with similar dimensions and operating conditions. Deionized water was used as the coolant. The test vehicles were made from copper with a footprint area of 25 mm × 25 mm. Microchannels having nominal width of 300 μm and a nominal aspect ratio of 4 were formed by wire cut Electro Discharge Machining process. The measured surface roughness (Ra) was about 2.0 μm. To facilitate easier comparison with the straight microchannels and also to simplify the method of fabrication, the expanding channels were formed with the removal of fins at selected location from the straight microchannel design, instead of using a diverging channel. Tests were performed on both the microchannels over a range of mass fluxes, heat fluxes and an inlet temperature of 90 °C. It was observed that the two-phase pressure drop across the expanding microchannel heat sink was significantly lower as compared to its straight counterpart. The pressure drop and wall temperature fluctuations were seen reduced in the expanding microchannel heat sink. It was also noted that the expanding microchannel heat sink had a better heat transfer performance than the straight microchannel heat sink, under similar operating conditions. This phenomenon in expanding microchannel heat sink, which was observed in spite of it having a lower convective heat transfer area, is explained based on its improved flow boiling stability that reduces the pressure drop oscillations, temperature oscillations and hence partial dry out.  相似文献   

9.
In this study, a genetic algorithm is employed to minimize the entropy generation rate in microchannel heat sinks. The entropy generation rate allows the combined effects of thermal performance and pressure drop to be assessed simultaneously as the heat sink interacts with the surrounding flow field. Previously developed models for the heat transfer, pressure drop and entropy generation rate are used in the optimization procedure. The results of optimization are compared with existing results obtained by the Newton–Raphson method. It is observed that the GA gives better overall performance of the microchannel heat sinks.  相似文献   

10.
The Constructal Theory is applied to obtain better thermal performance from a type of microchannel heat sink. Based on a smooth, straight, rectangular microchannel heat sink (Case 1), three different configurations of constructal multiple bifurcation are designed for the entrance region of each microchannel. These types are one bifurcation (Case 2), two bifurcations with the second placed in the front part (Case 3), and two bifurcations with the second bifurcation placed in the front part (Case 4). The corresponding laminar flow and heat transfer fields are investigated numerically by means of computational fluid dynamics. The effects of the bifurcation number and length ratio on pressure drop and overall thermal resistance are observed. The overall thermal resistance for the four microchannel heat sinks is compared when subjected to pumping power. It is found that designing one or two bifurcations (Cases 2, 3, 4) in the entrance region can improve thermal performance effectively. It is also recommended to place the second bifurcation in the back part (Case 4) of the microchannel heat sinks to obtain good overall thermal performance by proper design of the bifurcation position and number of channels.  相似文献   

11.
The hydrodynamic and thermal characteristics of fractal-shaped microchannel network heat sinks are investigated numerically by solving three-dimensional N–S equations and energy equation, taking into consideration the conjugate heat transfer in microchannel walls. It is found that due to the structural limitation of right-angled fractal-shaped microchannel network, hotspots may appear on the bottom wall of the heat sink where the microchannels are sparsely distributed. With slight modifications in the fractal-shaped structure of microchannels network, great improvements on hydrodynamic and thermal performance of heat sink can be achieved. A comparison of the performance of modified fractal-shaped microchannel network heat sink with parallel microchannels heat sink is also conducted numerically based on the same heat sink dimensions. It is found that the modified fractal-shaped microchannel network is much better in terms of thermal resistance and temperature uniformity under the conditions of the same pressure drop or pumping power. Therefore, the modified fractal-shaped microchannel network heat sink appears promising to be used for microelectronic cooling in the future.  相似文献   

12.
Numerical analysis is performed to examine the heat transfer characteristics of a double-layered microchannel heat sink. The three-dimensional governing equations are solved by the finite volume method. The effects of substrate materials, coolants, and geometric parameters such as channel number, channel width ratio, channel aspect ratio, substrate thickness, and pumping power on the temperature distribution, pressure drop, and thermal resistance are discussed. Predictions show that the heat transfer performance of the heat sink is improved for a system with substrate materials having a higher thermal conductivity ratio. A coolant with high thermal conductivity and low dynamic viscosity also enhances the heat transfer performance. The pressure drop decreases with the channel aspect ratio and channel width ratio. Further, the thermal resistance of the microchannel heat sink can be minimized by optimizing the geometric parameters. Finally, the results show that for the same geometric dimensions, the thermal performance of the double-layered microchannel heat sink is better than that of the single-layered one, by an average of 6.3%.  相似文献   

13.
The improvement of the cooling performance of liquid-cooled microchannel heat sinks used for densely packed electronic circuits is sorted via passive techniques like tuning substrate or coolant properties. We propose a design for enhancing heat sink performance by simulataneously modifying the channel geometry and tuning the fluid rheology. By modeling the coolant as a power law fluid, its rheological behavior is varied ranging from shear-thinning to shear-thickening, alongside Newtonian fluid. We introduced tapering to the middle wall that separates the bottom and top channels of a double layered microchannel heat sink (DL-MCHS), causing both channels to converge. This convergence not only increases the flow velocity within the downstream microchannel but also reduces the apparent viscosity of the shear-thinning fluid being subjected to shear, resulting in enhanced thermal and hydraulic performance. We analyze the results from both the first and the second law of thermodynamics context, demonstrating that a tapered DL-MCHS with shear-thinning fluid outperforms a straight partition wall DL-MCHS with Newtonian coolant. However, we also discovered that extreme tapering compromises thermodynamic viability, but by fine-tuning the extent of tapering, we inferred that a DL-MCHS with shear-thinning fluid can become viable with little compromise in the thermal performance.  相似文献   

14.
本文采用基于Navier-Stokes方程组对同侧出入流水冷式油冷器翅片中冷内却剂的流动情况进行了模拟,研究了翅片两端集流槽宽度对翅片流动换热性能的影响。结果表明,随着集流槽宽度的增加,翅片内部流动死区的面积逐渐减小,冷却剂的对流换热逐渐增强,翅片内部高温区中冷却液的温度逐渐降低;在翅片性能方面,随着集流槽宽度的增加,冷却剂在出、入口间的压降逐渐降低,平均对流换热系数逐渐增加,传热因子j与摩擦系数f之比逐渐增加,翅片综合性能逐渐提高。  相似文献   

15.
This work investigates the effects of a shield on the thermal and hydraulic characteristics of plate-fin vapor chamber heat sinks under cross flow cooling. The surface temperature distributions of the vapor chamber heat sinks are measured using infrared thermography. The thermal-fluid performance of vapor chamber heat sinks with a shield is determined by varying the fin width, the fin height, the fin number and the Reynolds number. The experimental data thus obtained are compared with those without a shield.Experimental results indicate that the maximum surface temperature of the vapor chamber heat sink is effectively reduced by adding the shield, which forces more cooling fluid into the inter-fin channel to exchange heat with the heat sink. However, using the shield increases the pressure drop across the heat sink. The experimental data also show that the enhancement of the heat transfer increases with the Reynolds number, but the improvement declines as the Reynolds number increases. When the pumping power and heat transfer are simultaneously considered, vapor chamber heat sinks with thinner, higher or more fins exhibit better thermal-hydraulic performance.  相似文献   

16.
A simultaneous visualization and measurement study has been carried out to investigate effects of inlet/outlet configurations on flow boiling instabilities in parallel microchannels, having a length of 30 mm and a hydraulic diameter of 186 μm. Three types of inlet/outlet configurations were investigated. Fluid flow entering to and exiting from the microchannels with the Type-A connection was restricted because the inlet and outlet conduits were perpendicular to the microchannels. The fluid flow had no restriction in entering to and existing from the microchannels with the Type-B connection. In the Type-C connection, fluid flow was restricted in entering each microchannel but was not restricted in exiting from the microchannels. It is found that amplitudes of temperature and pressure oscillations in the Type-B connection are much smaller than those in the Type-A connection under the same heat flux and mass flux conditions. On the other hand, nearly steady flow boiling exists in the parallel microchannels with the Type-C connection under the experimental conditions. Therefore, this configuration is recommended for high-heat-flux microchannel applications. As predicted, the stability threshold is determined by the minimum in the pressure-drop-versus-flow-rate curve. The pressure drop and heat transfer coefficient versus vapor quality for flow boiling in microchannels with the Type-C connection are presented. It is found that experimental data of pressure drop are higher and heat transfer coefficients are lower for boiling flow at high vapor quality in microchannels than those predicted from correlation equations for boiling flow in macrochannels, due to local dryout.  相似文献   

17.
Abstract

The micro-channel heat dissipation system has minor specifications and good thermal conductivity per unit, which is the best choice for heat dissipation of micro-chips. By optimizing the cross section of microchannel, the heat exchange efficiency and temperature uniformity can be effectively improved. In this article, a double-layer triangular microchannel heat sink is proposed, which uniquely combines triangular cross section and double-layer structure to obtain a better heat dissipation performance. A new thermal resistance network model is established. At the same time, the model of pressure drop in microchannel heat sink is obtained by use of fluid theory. Taking thermal resistance and pressure drop as optimization objectives, the thermal resistance of double-layer triangular microchannel heat sink is 0.284?K/W and the pressure drop is 1386.89?Pa by using the firefly algorithm based on the Pareto optimal solution set, obtaining the optimal structural parameters. The thermal-flow-solid coupling simulation analysis shows that the thermal resistance and theoretical analysis error is 5.19%, and the pressure drop and theoretical analysis error is 9.49%, which can verify the accuracy of the thermal resistance network model. This article has a guiding significance for the thermal resistance analysis and heat dissipation improvement of non-rectangular cross section microchannel heat sinks.  相似文献   

18.
In this study, the three-dimensional fluid flow and heat transfer in a rectangular micro-channel heat sink are analyzed numerically using water as the cooling fluid. The heat sink consists of a 1-cm2 silicon wafer. The micro-channels have a width of 57 μm and a depth of 180 μm, and are separated by a 43 μm wall. A numerical code based on the finite difference method and the SIMPLE algorithm is developed to solve the governing equations. The code is carefully validated by comparing the predictions with analytical solutions and available experimental data. For the micro-channel heat sink investigated, it is found that the temperature rise along the flow direction in the solid and fluid regions can be approximated as linear. The highest temperature is encountered at the heated base surface of the heat sink immediately above the channel outlet. The heat flux and Nusselt number have much higher values near the channel inlet and vary around the channel periphery, approaching zero in the corners. Flow Reynolds number affects the length of the flow developing region. For a relatively high Reynolds number of 1400, fully developed flow may not be achieved inside the heat sink. Increasing the thermal conductivity of the solid substrate reduces the temperature at the heated base surface of the heat sink, especially near the channel outlet. Although the classical fin analysis method provides a simplified means to modeling heat transfer in micro-channel heat sinks, some key assumptions introduced in the fin method deviate significantly from the real situation, which may compromise the accuracy of this method.  相似文献   

19.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

20.
This paper numerically and experimentally investigated the liquid cooling efficiency of heat sinks containing micro pin fins. Aluminum prototypes of heat sink with micro pin fin were fabricated to explore the flow and thermal performance. The main geometry parameters included the diameter of micro pin fin and porosity of fin array. The effects of the geometrical parameters and pressure drop on the heat transfer performance of the heat sink were studied. In the experiments, the heat flux from base of heat sink was set as 300 kW/m2. The pressure drop between the inlet and the outlet of heat sink was set < 3000 Pa. Numerical simulations with similar flow and thermal conditions were conducted to estimate the flow patterns, the effective thermal resistance. It was found that the effective thermal resistance would reach an optimum value for various pressure drops. It was also noted that the effective thermal resistance was not sensitive to porosity for sparsely packed pin fins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号