首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extended Kalman filter (EKF) has been a popular choice to solve simultaneous localization and mapping (SLAM) problems for mobile robots or vehicles. However, the performance of the EKF depends on the correct a priori knowledge of process and sensor/measurement noise covariance matrices (Q and R, respectively). Imprecise knowledge of these statistics can cause significant degradation in performance. The present paper proposes the development of a new neurofuzzy based adaptive Kalman filtering algorithm for simultaneous localization and mapping of mobile robots or vehicles, which attempts to estimate the elements of the R matrix of the EKF algorithm, at each sampling instant when a ldquomeasurement updaterdquo step is carried out. The neuro-fuzzy based supervision for the EKF algorithm is carried out with the aim of reducing the mismatch between the theoretical and the actual covariance of the innovation sequences. The free parameters of the neuro-fuzzy system are learned offline, by employing particle swarm optimization in the training phase, which configures the training problem as a high-dimensional stochastic optimization problem. By employing a mobile robot to localize and simultaneously acquire the map of the environment, under several benchmark environment situations with varying landmarks and under several conditions of wrong knowledge of sensor statistics, the performance of the proposed scheme has been evaluated. It has been successfully demonstrated that in each case, the neuro-fuzzy assistance is able to improve highly unpredictable, degrading performance of the EKF and can provide robust and accurate solutions.  相似文献   

2.
基于凸优化算法的无人水下航行器协同定位   总被引:1,自引:1,他引:0  
In this paper, a cooperative localization algorithm for autonomous underwater vehicles (AUVs) is proposed. A ``parallel" model is adopted to describe the cooperative localization problem instead of the traditional ``leader-follower" model, and a linear programming associated with convex optimization method is used to deal with the problem. After an unknown-but-bounded model for sensor noise is assumed, bearing and range measurements can be modeled as linear constraints on the configuration space of the AUVs. Merging these constraints induces a convex polyhedron representing the set of all configurations consistent with the sensor measurements. Estimates for the uncertainty in the position of a single AUV or the relative positions of two or more nodes can then be obtained by projecting this polyhedron onto appropriate subspaces of the configuration space. Two different optimization algorithms are given to recover the uncertainty region according to the number of the AUVs. Simulation results are presented for a typical localization example of the AUV formation. The results show that our positioning method offers a good localization accuracy, although a small number of low-cost sensors are needed for each vehicle, and this validates that it is an economical and practical positioning approach compared with the traditional approach.  相似文献   

3.
Performance analysis of multirobot Cooperative localization   总被引:2,自引:0,他引:2  
This paper studies the accuracy of position estimation for groups of mobile robots performing cooperative localization. We consider the case of teams comprised of possibly heterogeneous robots and provide analytical expressions for the upper bound on their expected positioning uncertainty. This bound is determined as a function of the sensors' noise covariance and the eigenvalues of the relative position measurement graph (RPMG), i.e., the weighted directed graph which represents the network of robot-to-robot exteroceptive measurements. The RPMG is employed as a key element in this analysis, and its properties are related to the localization performance of the team. It is shown that, for a robot group of a certain size, the maximum expected rate of uncertainty increase is independent of the accuracy and number of relative position measurements and depends only on the accuracy of the proprioceptive and orientation sensors on the robots. Additionally, the effects of changes in the topology of the RPMG are studied, and it is shown that, at steady-state, these reconfigurations do not inflict any loss in localization precision. Experimental data, as well as simulation results that validate the theoretical analysis, are presented.  相似文献   

4.
This paper deals with the problem of mobile-robot localization in structured environments. The extended Kalman filter (EKF) is used to localize the four-wheeled mobile robot equipped with encoders for the wheels and a laser-range-finder (LRF) sensor. The LRF is used to scan the environment, which is described with line segments. A prediction step is performed by simulating the kinematic model of the robot. In the input noise covariance matrix of the EKF the standard deviation of each robot-wheel’s angular speed is estimated as being proportional to the wheel’s angular speed. A correction step is performed by minimizing the difference between the matched line segments from the local and global maps. If the overlapping rate between the most similar local and global line segments is below the threshold, the line segments are paired. The line parameters’ covariances, which arise from the LRF’s distance-measurement error, comprise the output noise covariance matrix of the EKF. The covariances are estimated with the method of classic least squares (LSQ). The performance of this method is tested within the localization experiment in an indoor structured environment. The good localization results prove the applicability of the method resulting from the classic LSQ for the purpose of an EKF-based localization of a mobile robot.  相似文献   

5.
This paper focuses on the application of a decision support system based on evolutionary multi-objective optimization for deploying sensors in an indoor localization system. Our methods aim to provide the human expert who works as the sensor resource manager with a full set of Pareto efficient solutions of the sensor placement problem. In our analysis, we use five scalar performance measures as objective functions derived from the covariance matrix of the estimation, namely the trace, determinant, maximum eigenvalue, ratio of maximum and minimum eigenvalues, and the uncertainty in a given direction. We run the multi-objective genetic algorithm to optimize these objectives and obtain the Pareto fronts. The paper includes a detailed explanation of every aspect of the system and an application of the proposed decision support system to an indoor infrared positioning system. Final results show the different placement alternatives according to the objectives and the trade-off between different accuracy performance measures can be clearly seen. This approach contributes to the current state-of-the art in the fact that we point out the problems of optimizing a single accuracy measure and propose using a decision support system that provides the resource manager with a full overview of the set of Pareto efficient solutions considering several accuracy metrics. Since the manager will know all the Pareto optimal solutions before deciding the final sensor placement scheme, this method provides more information than dealing with a single function of the weighted objectives. Additionally, we are able to use this system to optimize objectives obtained from fairly complex functions. On the contrary, recent works that are referenced in this paper need to simplify the localization process to obtain tractable problem formulations.  相似文献   

6.
This paper presents a probabilistic approach for sensor-based localization with weak sensor data. Wireless received signal strength measurements are used to disambiguate sonar measurements in symmetric environments. Particle filters are used to model the multi-hypothesis estimation problem. Experiments indicate that multiple weak cues can provide robust position estimates and that multiple sensors also aid in solving the kidnapped robot problem.  相似文献   

7.
We propose to use a multi-camera rig for simultaneous localization and mapping (SLAM), providing flexibility in sensor placement on mobile robot platforms while exploiting the stronger localization constraints provided by omni-directional sensors. In this context, we present a novel probabilistic approach to data association, that takes into account that features can also move between cameras under robot motion. Our approach circumvents the combinatorial data association problem by using an incremental expectation maximization algorithm. In the expectation step we determine a distribution over correspondences by sampling. In the maximization step, we find optimal parameters of a density over the robot motion and environment structure. By summarizing the sampling results in so-called virtual measurements, the resulting optimization simplifies to the equivalent optimization problem for known correspondences. We present results for simulated data, as well as for data obtained by a mobile robot equipped with a multi-camera rig.  相似文献   

8.
A critical problem in mobile ad hoc wireless sensor networks is each node’s awareness of its position relative to the network. This problem is known as localization. In this paper, we introduce a variant of this problem, directional localization, where each node must be aware of both its position and orientation relative to its neighbors. Directional localization is relevant for applications that require uniform area coverage and coherent movement. Using global positioning systems for localization in large scale sensor networks may be impractical in enclosed spaces, and might not be cost effective. In addition, a set of pre-existing anchors with globally known positions may not always be available. In this context, we propose two distributed algorithms based on directional localization that facilitate the collaborative movement of nodes in a sensor network without the need for global positioning systems, seed nodes or a pre-existing infrastructure such as anchors with known positions. Our first algorithm, GPS-free Directed Localization (GDL) assumes the availability of a simple digital compass on each sensor node. We relax this requirement in our second algorithm termed GPS- and Compass-free Directed Localization (GCDL). Through experimentation, we demonstrate that our algorithms scale well for large numbers of nodes and provide convergent localization over time, despite errors introduced by motion actuators and distance measurements. In addition, we introduce mechanisms to preserve swarm formation during directed sensor network mobility. Our simulations confirm that, in a number of realistic scenarios, our algorithms provide for a mobile sensor network that preserves its formation over time, irrespective of speed and distance traveled. We also present our method to organize the sensor nodes in a polygonal geometric shape of our choice even in noisy environments, and investigate the possible uses of this approach in search-and-rescue type of missions.  相似文献   

9.
We present a sensor fusion management technique based on information theory in order to reduce the uncertainty of map features and the robot position in SLAM. The method is general, has no extra postulated conditions, and its implementation is straightforward. We calculate an entropy weight matrix which combines the measurements and covariance of each sensor device to enhance reliability and robustness. We also suggest an information theoretic algorithm via computing the error entropy to confirm the relevant features for associative feature determination. We validate the proposed sensor fusion strategy in EKF-SLAM and compare its performance with an implementation without sensor fusion. The simulated and real experimental studies demonstrate that this sensor fusion management can reduce the uncertainty of map features as well as the robot pose.  相似文献   

10.
He  Yanlin  Zhu  Lianqing  Sun  Guangkai  Qiao  Junfei 《Microsystem Technologies》2019,25(2):573-585

With the goal of supporting localization requirements of our spherical underwater robots, such as multi robot cooperation and intelligent biological surveillance, a cooperative localization system of multi robot was designed and implemented in this study. Given the restrictions presented by the underwater environment and the small-sized spherical robot, an time of flight camera and microelectro mechanical systems (MEMS) sensor information fusion algorithm using coordinate normalization transfer models were adopted to construct the proposed system. To handle the problem of short location distance, limited range under fixed view of camera in the underwater environment, a MEMS inertial sensor was used to obtain the attitude information of robot and expanding the range of underwater visual positioning, the transmission of positioning information could implement through the normalization of absolute coordinate, then the positioning distance increased and realized the localization of multi robot system. Given the environmental disturbances in practical underwater scenarios, the Kalman filter model was used to minimizing the systematic positioning error. Based on the theoretical analysis and calculation, we describe experiments in underwater to evaluate the performance of cooperative localization. The experimental results confirmed the validity of the multi robot cooperative localization system proposed in this paper, and the distance of cooperative localization system proposed in this paper is larger than the visual positioning system we have developed previously.

  相似文献   

11.
Sensor position and velocity uncertainties are known to be able to degrade the source localization accuracy significantly. This paper focuses on the problem of locating multiple disjoint sources using time differences of arrival (TDOAs) and frequency differences of arrival (FDOAs) in the presence of sensor position and velocity errors. First, the explicit Cramér–Rao bound (CRB) expression for joint estimation of source and sensor positions and velocities is derived under the Gaussian noise assumption. Subsequently, we compare the localization accuracy when multiple-source positions and velocities are determined jointly and individually based on the obtained CRB results. The performance gain resulted from multiple-target cooperative positioning is also quantified using the orthogonal projection matrix. Next, the paper proposes a new estimator that formulates the localization problem as a quadratic programming with some indefinite quadratic equality constraints. Due to the non-convex nature of the optimization problem, an iterative constrained weighted least squares (ICWLS) method is developed based on matrix QR decomposition, which can be achieved through some simple and efficient numerical algorithms. The newly proposed iterative method uses a set of linear equality constraints instead of the quadratic constraints to produce a closed-form solution in each iteration. Theoretical analysis demonstrates that the proposed method, if converges, can provide the optimal solution of the formulated non-convex minimization problem. Moreover, its estimation mean-square-error (MSE) is able to reach the corresponding CRB under moderate noise level. Simulations are included to corroborate and support the theoretical development in this paper.  相似文献   

12.
基于模糊自适应卡尔曼滤波的移动机器人定位方法*   总被引:1,自引:0,他引:1  
针对移动机器人定位过程中噪声统计特性不确定的问题,提出一种模糊自适应扩展卡尔曼滤波定位方法。利用模糊理论和协方差匹配技术对扩展卡尔曼滤波算法中的观测噪声协方差R进行自适应调整,实现定位算法性能的在线改进;同时采用传感器故障诊断与修复算法来监测传感器的工作状态,提高定位算法的鲁棒性。将该方法用于观测噪声统计特性未知情况下的移动机器人定位。实验结果表明,该方法可以有效地降低观测噪声先验信息不确定的影响,提高机器人定位的精度。  相似文献   

13.
In this study, we present an optimization based solution to the simultaneous localization and mapping (SLAM) problem. In the proposed algorithm, the SLAM problem is considered as two optimization problems. These problems are solved using forward dynamic programming. In the first problem, it is assumed that map is known perfectly and the robot path is estimated. In the second problem, the estimated robot path with their corresponding measurements is used to identify map. As optimization problem in each step of dynamic programming have high nonlinearity and also differential evolution (DE) tends to find the globally optimal solution without being trapped at local maxima, DE is developed to solve dynamic programming in each step of time. Some simulations and experiments are presented to illustrate the proposed algorithm and exhibit its performance.  相似文献   

14.
针对移动机器人在定位过程中,由传感器测量误差和机器人模型引起的位姿误差导致系统定位精度急剧下降的问题,提出了一种多新息卡尔曼滤波算法.在标准卡尔曼滤波的基础上,当传感器测量值存在误差时,引入抗差权因子,通过改变误差测量值的权值提高滤波器的估计精度;当机器人位姿存在误差时,引入自适应因子,通过调整状态协方差矩阵的大小抵制位姿误差引起的滤波发散.同时,引入了多新息,即多个时刻的新息向量,进一步提高此非线性系统的精度.实验表明:当存在测量误差和位姿误差时,该滤波算法能有效提高定位精度.  相似文献   

15.
Sensor network localization problem is to determine the position of the sensor nodes in a network given pairwise distance measurements. Such problem can be formulated as a quartic polynomial minimization via the least squares method. This paper presents a canonical duality theory for solving this challenging problem. It is shown that the nonconvex minimization problem can be reformulated as a concave maximization dual problem over a convex set in a symmetrical matrix space, and hence can be solved efficiently by combining a general (linear or quadratic) perturbation technique with existing optimization techniques. Applications are illustrated by solving some relatively large-scale problems. Our results show that the general sensor network localization problem is not NP-hard unless its canonical dual problem has no solution in its positive definite domain. Fundamental ideas for solving general NP-hard problems are discussed.  相似文献   

16.
This paper presents a localization method for a mobile robot equipped with only low-cost ultrasonic sensors. Correlation-based Hough scan matching was used to obtain the robot’s pose without any predefined geometric features. A local grid map and a sound pressure model of ultrasonic sensors were used to acquire reliable scan results from uncertain and noisy ultrasonic sensor data. The robot’s pose was measured using correlation-based Hough scan matching, and the covariance was calculated. Localization was achieved by fusing the measurements from scan matching with the robot’s motion model through the extended Kalman filter. Experimental results verified the performance of the proposed localization method in a real home environment.  相似文献   

17.
Wireless sensor networks (WSN) have great potential in ubiquitous computing. However, the severe resource constraints of WSN rule out the use of many existing networking protocols and require careful design of systems that prioritizes energy conservation over performance optimization. A key infrastructural problem in WSN is localization—the problem of determining the geographical locations of nodes. WSN typically have some nodes called seeds that know their locations using global positioning systems or other means. Non-seed nodes compute their locations by exchanging messages with nodes within their radio range. Several algorithms have been proposed for localization in different scenarios. Algorithms have been designed for networks in which each node has ranging capabilities, i.e., can estimate distances to its neighbours. Other algorithms have been proposed for networks in which no node has such capabilities. Some algorithms only work when nodes are static. Some other algorithms are designed specifically for networks in which all nodes are mobile. We propose a very general, fully distributed localization algorithm called range-based Monte Carlo boxed (RMCB) for WSN. RMCB allows nodes to be static or mobile and that can work with nodes that can perform ranging as well as with nodes that lack ranging capabilities. RMCB uses a small fraction of seeds. It makes use of the received signal strength measurements that are available from the sensor hardware. We use RMCB to investigate the question: “When does range-based localization work better than range-free localization?” We demonstrate using empirical signal strength data from sensor hardware (Texas Instruments EZ430-RF2500) and simulations that RMCB outperforms a very good range-free algorithm called weighted Monte Carlo localization (WMCL) in terms of localization error in a number of scenarios and has a similar computational complexity to WMCL. We also implement WMCL and RMCB on sensor hardware and demonstrate that it outperforms WMCL. The performance of RMCB depends critically on the quality of range estimation. We describe the limitations of our range estimation approach and provide guidelines on when range-based localization is preferable.  相似文献   

18.
This article presents a fast self-localization method based on ZigBee wireless sensor network and laser sensor, an obstacle avoidance algorithm based on ultrasonic sensors for a mobile robot. The positioning system and positioning theory of ZigBee which can obtain a rough global localization of the mobile robot are introduced. To realize accurate local positioning, a laser sensor is used to extract the features from environment, then the environmental features and global reference map can be matched. From the matched environmental features, the position and orientation of the mobile robot can be obtained. To enable the mobile robot to avoid obstacle in real-time, a heuristic fuzzy neural network is developed by using heuristic fuzzy rules and the Kohonen clustering network. The experiment results show the effectiveness of the proposed method.  相似文献   

19.
Optical mouse sensors have been utilized recently to measure the position and orientation of a mobile robot. This work provides a systematic solution to the problem of locating N optical mouse sensors on a mobile robot with the aim of increasing the quality of the position measurements. The developed analysis gives insights on how the selection of a particular configuration influences the estimation of the robot position, and it allows to compare the effectiveness of different configurations. The results are derived from the analysis of the singular values of a particular matrix obtained by solving the sensor kinematics problem. Moreover, given any mobile robot platform, an end-user procedure is provided to select the best location for N optical mouse sensors on such a platform. The procedure consists of solving a feasible constrained optimization problem.  相似文献   

20.
为了解决未知环境下的单目视觉移动机器人目标跟踪问题,提出了一种将目标状态估计与机器人可观性控制相结合的机器人同时定位、地图构建与目标跟踪方法。在状态估计方面,以机器人单目视觉同时定位与地图构建为基础,设计了扩展式卡尔曼滤波框架下的目标跟踪算法;在机器人可观性控制方面,设计了基于目标协方差阵更新最大化的优化控制方法。该方法能够实现机器人在单目视觉条件下对自身状态、环境状态、目标状态的同步估计以及目标跟随。仿真和原型样机实验验证了目标状态估计和机器人控制之间的耦合关系,证明了方法的准确性和有效性,结果表明:机器人将产生螺旋状机动运动轨迹,同时,目标跟踪和机器人定位精度与机器人机动能力成正比例关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号