首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results reveal the formation of a new erbium zirconium oxide,Zr_3 Er_4 O_(12),with a granulate morphology when Er_2 O_3 content is higher than 1 wt%. The grain sizes of both Al_2 O_3 and yttria-stabilized zirconia phases decrease with an increase in the Er_2 O_3 content. The relative density, Vickers hardness and fracture toughness of the composites are found to be strongly dependent on their grain sizes, relative densities and the formation of the Zr_3 Er_4 O_(12) secondary phases. The composite with 5 wt% Er_2 O_3 shows the highest relative density(99.93%), Vickers hardness(1752 HV) and fracture toughness(7.92 MPa·m~(1/2)).  相似文献   

2.
The process to prepare pure phase of hexagonal Y2O2S was investigated. Effect of mixed flux of Na2CO3 and S amounts was studied. The phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the single phase of Y2O2S with smooth morphology could not be obtained as the molar ratio of Y2O3, Na2CO3 and S was in the range of 1:(0.5-1):(2-3) until the molar ratio was increased to 1:1.5:4. Different Er3+ concentration doped Y2O2S...  相似文献   

3.
ZrO2 containing 2% (mol fraction) Y2O3 and 3% (mol fraction) Y2O3 were added into Al2O3 matrix, compositing composites with 15% volume fraction of addictives mentioned above. The testing of property and analysis of SEM presented that, after vacuum sintering at 1550 °C, thermal shock resistance of two composites was superior to Al2O3 ceramic. The experiment showed that the properties of Al2O3 composites was higher than Al2O3 ceramic, and Al2O3/ZrO2(3Y) was higher than Al2O3/ZrO2(2Y) in thermal shock resistance. Improvement of thermal shock resistance of composites was attributed to many toughness machanisms of ZrO2(Y2O3). By calculation, the fracture energy of Al2O3, Al2O3/ZrO2 (2Y) and Al2O3/ZrO2(3Y) was 38100.8 and 126.2 J·m−2, respectively. Cracks initiation resistance (R') of Al2O3/ZrO2(3Y) and Al2O3/ZrO2(2Y) was higher than Al2O3 ceramic by 1.57 and 1.41 time, respectively, and cracks propagation resistance (R″″) was higher than Al2O3 ceramic by 1.46 and 1.38 time, respectively, which was corresponding to the results of residual strength.  相似文献   

4.
ErxTi0.1Zr0.9–xO2–1.5x (x = 0.04, 0.05, 0.06, 0.07, 0.08) ceramics were synthesized by a solid-state reaction method. The influence of the Er3+ addition on the phase composition, Vickers hardness, fracture toughness, and thermal conductivity of this ceramic material was investigated. The X-ray diffraction results reveal that the c-ZrO2 content increases from 1.85 vol% to 33.89 vol%, and the percentage of t-ZrO2 decreases from 98.15 vol% to 66.11 vol% with the increase in Er3+ content from 4 mol% to 8 mol%. Moreover, the addition of Er3+ is beneficial to the volume expansion of the unit cell. At the same time, the incorporation of Er3+ weakens the coordination of oxygen ions around the metal cations, resulting in a corresponding decrease in the tetragonality of the t-ZrO2. The Vickers hardness and fracture toughness of the ErxTi0.1Zr0.9–xO2–1.5x ceramics show increasing and decreasing trends, respectively. The thermal conductivity has a significant decline due to point defects caused by the Er3+ doping. The 8ETZ ceramic exhibits the highest Vickers hardness (12.7 GPa), the lowest fracture toughness (7.6 MPa?m1/2), and the lowest average thermal conductivity (1.85 W/(m·K)) in the temperature range of 200–1000 °C. All of the above properties are higher than those of the Y2O3-stabilized ZrO2 ceramic.  相似文献   

5.
We studied the reactions of Ti and Zr with AlN, 99.8% Al2O3 and 95% Al2O3. The substrates were chosen to represent a simple nitride (AlN), a simple oxide (99.8% Al2O3), and a simple oxide with a silicate grain boundary phase (95% Al2O3). The activities of the Ti and the Zr were varied by dissolving them at 1 and 5 wt% in the 72 Ag-28 Cu eutectic composition, which is otherwise unreactive with the ceramics. Reactions were studied by measuring the variation of the alloy contact angle on the ceramic with time at temperature and by determining the compositions of interfacial reaction products. Contact angles were lower for Ti alloys than for those containing Zr. Reaction products were primarily the nitrides of Zr and Ti for reaction with AlN and the respective oxides for reaction with Al2O3. Complex alloy phases were found in the metal away from the ceramic-metal reaction zone.  相似文献   

6.
Conclusions An investigation into the creep of Al2O3-AlN and Y2O3-AlN ceramics has demostrated that the addition of 20–80% AlN reduces the creep rate of Al2O3. In the system Y2O3-AlN the existence of a creep rate maximum has been discovered, which may be a manifestation of structural superplasticity.Translated from Poroshkovaya Metallurgiya, No. 2(158), pp. 76–82, February, 1976.The authors wish to thank Prof. R. A. Andrievskii for his interest in this work.  相似文献   

7.
BaO-Y2O3-TiO2 microwave dielectric ceramics with the rich area of TiO2 were fabricated by a solid-state reaction method using BaCO3, Y2O3, TiO2 powders as starting materials. The sintering characteristics, phase composition, micro-structures and microwave dielectric properties of BaO-Y2O3-TiO2 microwave dielectric ceramics with different k values sintered at different temperatures were investigated. The results showed that the sintering temperature of BaO-Y2O3-TiO2 microwave dielectric ceramics was lower (about 1240 °C), and the sintered ceramics with the major phase of Y2Ti2O7 had excellent dielectric properties. When k = 4, ɛr and tanδ were about 78.3 and 3 × 10−3 respectively. When k=5, ɛr and tanδ were about 53 and 9 × 10−4 respectively.  相似文献   

8.
The present paper discussed some fundamental aspects on composite oxide scales and coatings for protection of alloys from high temperature oxidation, the related thermodynamic conditions, special mechanical characteristics and a sealing mechanism. It was proposed that the oxide scales and coatings with a composite structure should possess superior mechanical properties than that with a single phase oxide. It also showed that the Al2O3 scales or coatings doped with Y2O3 and ZrO2 (or YSZ)-Al2O3 composite coatings possessed superior properties at high temperatures. In such composite oxide scales and coatings, the fracture resistance of the scales was increased by the toughening effect, the thermal stress was decreased owing to the increase of thermal-expansion coefficients, and Al2O3 phase could seal the alloy substrate well. In addition, the kinetic equation of thermal growth oxide on alloy covered with composite oxide coatings was derived.  相似文献   

9.
To prepare ytterbium doped lanthania yttria nanopowder a method of laser evaporation of mixed oxides was used. After calcinations of the powder at 1200 °C a pure single-phase solid solution Yb3+:(LaxY1–x)2O3 was formed in the nanoparticles. Influence of lanthanum oxide as an isovalent additive on the yttria structure was investigated. The lanthanium ions were proved to be a good aid to sinter yttria ceramics doped with Yb3+ at moderate temperatures about 1650 °С. The ceramics with relative density higher than 99.99% and grain size about 40 μm were fabricated. Full transmittance of 1.8 mm thick Yb0.11La0.23Y1.66O3 ceramics reached 82.5% at 800 nm. This material could be a good gain medium for ytterbium high power pulse lasers.  相似文献   

10.

The effect of scandium oxide additions on the emission properties of impregnated tungsten cathodes was investigated. The synthesis of alumoscandates in the BaO ― CaO ― Sc2O3 ― Al2O3 system were studied by x-ray diffraction, thermography, and petrographic analysis. The hygroscopic properties of the emission-active material was determined. Based on the results of emission tests the recommended optimal compositions of emission-active material are 2.4 BaO·0.6 CaO·0.1 Sc2O3·0.9 Al2O3 and 2.6 BaO·1.9 CaO·0.1 Sc2O3·0.9 Al2O3. Cathodes based on these compositions had lifetimes greater than 10000 h operating in the temperature range 900-1000°C at current densities of 15-20 A/cm2 in a vacuum of the order of 10−6 Torr.

  相似文献   

11.
Rare earth Er3+ doped (Sm1–xErx)2Zr2O7 (x = 0.1, 0.2, and 0.3) ceramic samples were synthesized using a solid state reaction method. The microstructure and thermal properties of these ceramics were investigated to evaluate their potential as thermal barrier coating materials. The results show that ceramics are compact with regular-shaped grains of 1–5 μm size. (Sm1–xErx)2Zr2O7 has a pyrochlore structure mainly determined by ionic radius ratio, but the ordering degree decreases with increase of the Er2O3 content. There is no phase transformation from 1000 to 1200 °C, and the (Sm1–xErx)2Zr2O7 ceramics exhibit excellent phase stability during thermal treatment at 1200 °C for 100 h and 1400 °C for 50 h. The thermal conductivities of dense (Sm1–xErx)2Zr2O7 ceramics range from 1.52 to 1.59 W/(m·K), which is lower than that of Sm2Zr2O7, and decrease as the Er2O3 content increases. Besides, the thermal expansion coefficient of (Sm1–xErx)2Zr2O7 is higher than that of Sm2Zr2O7.  相似文献   

12.
The influence of Dy2O3 doping on the properties of medium temperature sintering (Ba, Sr)TiO3 series capacitor ceramics was studied by single factor various amount method, and the law of the influence on the medium temperature sintering (Ba, Sr)TiO3 series capacitor ceramics was obtained. The dielectric materials used for multilayer ceramic capacitor was obtained, of which the dielectric constant was 1375, the dielectric loss was 0.0060, the density was 5.92 g·cm−3, the sintering temperature was less than 1150 °C, the capacitance temperature changing rate (ΔC/C) was less than ± 15%, the voltage withstand strength was more than 9.3 kV·mm−1, and the crystal grain size was about 1 μm. The surface morphology of the sample doped with various amount Dy2O3 was analyzed by scanning electron microscope (SEM). The results showed that doping Dy2O3 could form defect solid solution, stop grain growth, fine crystal grain, widen curie peak, obtaining high dielectric constant and low dielectric loss, capacitance temperature property was suited for X7R character, in the (Ba,Sr)TiO3 series ceramics. At the same time, the voltage withstand strength was enhanced greatly.  相似文献   

13.
Studies have been made on the changes in structure and properties of sintered materials: Si3N4 - 5 mass% Y2O3 - 2 mass% Al2O3, Si3N4 - 5 mass% Y2O3 - 5 mass% Al2O3, and Si3N4 - 40 mass% TiN on deformation in a high-pressure chamber of toroid type (pressure 4–5 GPa, temperature 1000–1600 °C), and also by direct extrusion with degrees of reduction of 55 and 72% (temperature 1750–1850 °C, pressure on the plunger 20–30 MPa). After pressure-chamber treatment, the materials have elevated mechanical characteristics: HV10 ≈ 16.7 GPa, KIc up to 8.4 MPa · m1/2 for the system Si3N4 - Y2O3 - Al2O3; and HV10 ≈ 16.9 GPa, KIc up to 9.4 MPa · m1/2 for Si3N4 - TiN. A structure feature is the small size of the coherent-scattering regions: 51 nm for Si3N4 and 65 nm for TiN in the system Si3N4 - TiN, and 33 nm for specimens in the system Si3N4 - Y2O3 - Al2O3. High-temperature extrusion results in a structure with β-Si3N4 grains elongated along the deformation direction. The anisotropic structure has KIc values in directions perpendicular to and parallel to the direction of extrusion of 11.5–12.0 MPa · m1/2 and 7.5–7.8 MPa · m1/2, respectively. The hardness after extrusion becomes 16.0 GPa.  相似文献   

14.
A monolithic FeAl3-Fe2Al5 alloy exhibited a predominantly transgranular cleavage fracture mode and a fracture toughness value of about 1.1 MPa m1/2 at room temperature. It is suggested that the low fracture toughness value for the alloy is a result of its complex crystal structure (intrinsic). The incorporation of 10 vol % Al2O3 or Y2O3 particles into the matrix increased the fracture toughness to 3.4 to 3.8 MPa m1/2. The increase in fracture toughness is attributed to crack deflection by the particles. As a result, due to their excellent high temperature creep strength and oxidation resistance coupled with low material costs, intermetallics based upon FeAl2, Fe2Al5 and FeAl3 may be excellent candidates for high temperature applications if their ductility and toughness at room temperature can be improved.  相似文献   

15.
Er was used as a dopant for the first time in preparing conductive powder to improve its performance. Er and Sb doped SnO2 conductive nanoparticles were prepared by the complexation-coprecipitation method with Sn, Sb2O3 and Er2O3 as the raw materials. Thermal behavior, crystal phase, and structure of the prepared conductive nanoparticles were characterized by TG/DSC, FTIR, XRD and TEM techniques, respectively. The resistivity of the prepared conductive nanoparticles was 0.29 Ω·cm; TG/DSC curves showed that the precursors lost weight completely before 750 °C; FTIR spectrum showed that the vibration peak were wide peak in 711 × 600 cm−1; the Er and Sb doped SnO2 conductive nanoparticles had intense absorption in 4000 × 1600 cm−1; Er and Sb doped SnO2 had a structure of tetragonal rutile; complex doping was achieved well by complexation-coprecipitation method and was recognized as replacement doping or caulking doping; TME showed that the particles were weakly agglomerated, the size of the particles calcined at 800 °C ranged approximately from 10 to 30 nm.  相似文献   

16.
Friction and wear are studied for materials of the system TiN — AlN preliminary oxidized at 800–1100°C. It was established that thin oxide films containing Al2TiO5 and α-Al2O3, that promote a decrease in frictional wear, form on the surface of composite materials of the system TiN — AlN. Our assumptions are confirmed that the improvement in tribological properties of TiN — AlN composites is caused by forming oxide screening layers that prevent direct contact between the ceramics and steel counter-body. At high rates (V=16 m/sec) and pressure (P=2.0 MPa) the oxide films form more rapidly. Translated from Poroshkovaya Metallurgiya, Nos. 1–2(411), pp. 121–124, January–February, 2000.  相似文献   

17.
Nickel-20 wt pet chromium alloys containing ThO2, Y2O3, La2O3, Al2O3 and Li2O, as prepared by the mechanical alloying technique, were examined for isothermal and cyclic oxidation resistance in dry air at 1000, 1100 and 1200°C. TDNiCr, a commercial electrical heating element alloy (Com Ni-20Cr) and a laboratory melted alloy9Lab Ni-20Cr) were also tested. It was found that Y2O3, La2O3, Al2O3 and ThO2 dispersoids markedly increased both isothermal and cyclic oxidation resistance compared to Lab Ni-20Cr at all temperatures; in contrast Li2O additions gave no improvement in protection. Com Ni-20Cr was in between Lab Ni-20Cr and the Y2O3, A12O3 and ThO2 containing alloys in both cyclic and isothermal oxidation performance. A mechanism based on alterations in the defect structure of Cr2O3 is proposed to explain these dispersed oxide effects on isothermal oxidation behavior. It is based on a reduction in cation transport rates which in turn alter the rate of oxide growth. ThO2-containing alloys fabricated by the mechanical alloying technique were found to have oxidation resistance fully equal to commercial TDNiCr. Com Ni-20Cr performed better than Lab Ni-20Cr, but not as well as TDNiCr.  相似文献   

18.
Nickel-20 wt pet chromium alloys containing ThO2, Y2O3, La2O3, Al2O3 and Li2O, as prepared by the mechanical alloying technique, were examined for isothermal and cyclic oxidation resistance in dry air at 1000, 1100 and 1200°C. TDNiCr, a commercial electrical heating element alloy (Com Ni-20Cr) and a laboratory melted alloy9Lab Ni-20Cr) were also tested. It was found that Y2O3, La2O3, Al2O3 and ThO2 dispersoids markedly increased both isothermal and cyclic oxidation resistance compared to Lab Ni-20Cr at all temperatures; in contrast Li2O additions gave no improvement in protection. Com Ni-20Cr was in between Lab Ni-20Cr and the Y2O3, A12O3 and ThO2 containing alloys in both cyclic and isothermal oxidation performance. A mechanism based on alterations in the defect structure of Cr2O3 is proposed to explain these dispersed oxide effects on isothermal oxidation behavior. It is based on a reduction in cation transport rates which in turn alter the rate of oxide growth. ThO2-containing alloys fabricated by the mechanical alloying technique were found to have oxidation resistance fully equal to commercial TDNiCr. Com Ni-20Cr performed better than Lab Ni-20Cr, but not as well as TDNiCr.  相似文献   

19.
Al2O3/TiCN-0.2% Y2O3 composites were fabricated by hot pressing sintering. The effect on mechanical property and microstructure of the sample composition and HP temperate was investigated. The results of Al2O3/TiCN-0.2% Y2O3 were satisfied. The bending strength, fracture toughness, Vickers hardness was respectively 1015 MPa, 6.89 MPa·m1/2 20.82 MPa at 1650 °C for 20 min. Good wear resistance was found for the kind of ceramic material when used as cutting tools in the machining of the hardened carbon steel. By the compared experiment for the cutting performances, it could be seen that the performance of this composite material was better than that of the ceramic tool material YT15 for continuously cutting quenched steel. This kind of composite tool material is suitable for continuously cutting quenched steel No.45, especially intermittently cutting quenched steel.  相似文献   

20.

In this work, α-SiC ceramics with aluminum or yttria sintering additives ranging from 1.0 to 4.0 wt pct were prepared by hot pressing, and the effect of sintering additives on the microstructure and mechanical properties of SiC ceramics was investigated. Specimens with Al additive exhibited fully dense microstructure with relative density > 99.4 pct. However, the relative density of specimens with Y2O3 decreases constantly from 99.5 to 95.7 pct as Y2O3 content increases, which is possibly due to the formation of gaseous phase and evaporation of volatile compounds resulting from the chemical reaction between SiC matrix and Y2O3 additive. X-ray diffraction (XRD) and Raman spectra results showed that Al addition leads to the transformation from 6H to 4H polytypes, and the transformation degree increases as increasing the Al content, while no obvious polytype transformation is observed for specimens with Y2O3 additive. Scanning electron microscopy (SEM) observations revealed that specimens with Y2O3 are composed of equiaxed grains with average size about 1.0 μm, whereas the specimens with Al additive exhibit larger grain size with partly elongated grain structure. Additionally, it is found that the grain growth of specimens with Al addition is accompanied by the polytype transformation. Further analysis revealed that, for specimens with Al additive, enhanced grain size and formation of elongated of SiC grains lead to an improvement in fracture toughness from 5.7 to 7.1 MPa m1/2 but a slight decline in flexural strength from 706 to 632 MPa. The crack deflection and bridging as well as undesirable stress effects related to the large elongated grains are responsible for the variation in mechanical properties. In the case of SiC sintered with Y2O3, there are obvious declines in flexural strength and fracture toughness from 714 to 492 MPa and from 5.9 to 3.4 MPa m1/2, respectively, which are mainly attributed to the increased porosity. The impact of Al and Y2O3 on the microstructure and mechanical properties of SiC ceramics was discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号