首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk−/−/Mct8−/y/Mct10−/− mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk−/− and Mct8−/y mice, whereas its localization is restricted to vesicles in Mct10−/− thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk−/−/Mct10−/− mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10−/− mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8−/y, Mct8−/y/Mct10−/−, and Ctsk−/−/Mct8−/y/Mct10−/− mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.  相似文献   

2.
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.  相似文献   

3.
Inappropriate secretion of thyroid-stimulating hormone (IST), also known as central hyperthyroidism, is a clinical condition characterized by elevated free thyroxine and triiodothyronine concentrations concurrent with detectable thyroid-stimulating hormone (TSH) concentrations. Similarly, the term syndrome of IST (SITSH) is widely used in Japan to refer to a closely related condition; however, unlike that for IST, an elevated serum free triiodothyronine concentration is not a requisite criterion for SITSH diagnosis. IST or SITSH is an important indicator of resistance to thyroid hormone β (RTHβ) caused by germline mutations in genes encoding thyroid hormone receptor β (TRβ) and TSH-secreting pituitary adenoma. Recent evidence has accumulated for several conditions associated with IST, including RTH without mutations in the TRβ gene (non-TR-RTH), the phenomenon of hysteresis involving the hypothalamus-pituitary-thyroid axis (HPT-axis), methodological interference, and Cushing’s syndrome after surgical resection. However, little information is available on the systematic pathophysiological aspects of IST in previous review articles. This report presents an overview of the recent advances in our understanding of the etiological aspects of IST that are relevant for diagnosis and treatment. Moreover, the report focuses on the potential mechanism of IST caused by hysteresis in the HPT-axis (lagging TSH recovery) in terms of epigenetic regulation.  相似文献   

4.
βarrestin (βarr)-1 and -2 (βarrs) (or Arrestin-2 and -3, respectively) are universal G protein-coupled receptor (GPCR) adapter proteins expressed abundantly in extra-retinal tissues, including the myocardium. Both were discovered in the lab of the 2012 Nobel Prize in Chemistry co-laureate Robert Lefkowitz, initially as terminators of signaling from the β-adrenergic receptor (βAR), a process known as functional desensitization. They are now known to switch GPCR signaling from G protein-dependent to G protein-independent, which, in the case of βARs and angiotensin II type 1 receptor (AT1R), might be beneficial, e.g., anti-apoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac GPCR signaling and function (or dysfunction in disease), remain unknown. The current consensus is that, whereas both βarr isoforms can desensitize and internalize cardiac GPCRs, they play quite different (even opposing in certain instances) roles in the G protein-independent signaling pathways they initiate in the cardiovascular system, including in the myocardium. The present review will discuss the current knowledge in the field of βarrs and their roles in GPCR signaling and function in the heart, focusing on the three most important, for cardiac physiology, GPCR types (β1AR, β2AR & AT1R), and will also highlight important questions that currently remain unanswered.  相似文献   

5.
Increased airway wall thickness and remodeling of bronchial mucosa are characteristic of asthma and may arise from altered integrin signaling on airway cells. Here, we analyzed the expression of β1-subfamily integrins on blood and airway cells (flow cytometry), inflammatory biomarkers in serum and bronchoalveolar lavage, reticular basement membrane (RBM) thickness and collagen deposits in the mucosa (histology), and airway geometry (CT-imaging) in 92 asthma patients (persistent airflow limitation subtype: n = 47) and 36 controls. Persistent airflow limitation was associated with type-2 inflammation, elevated soluble α2 integrin chain, and changes in the bronchial wall geometry. Both subtypes of asthma showed thicker RBM than control, but collagen deposition and epithelial α1 and α2 integrins staining were similar. Type-I collagen accumulation and RBM thickness were inversely related to the epithelial expression of the α2 integrin chain. Expression of α2β1 integrin on T-cells and eosinophils was not altered in asthma. Collagen I deposits were, however, more abundant in patients with lower α2β1 integrin on blood and airway CD8+ T-cells. Thicker airway walls in CT were associated with lower α2 integrin chain on blood CD4+ T-cells and airway eosinophils. Our data suggest that α2β1 integrin on inflammatory and epithelial cells may protect against airway remodeling advancement in asthma.  相似文献   

6.
Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.  相似文献   

7.
We previously reported that arsenic (As) impaired learning and memory by down-regulating calmodulin-dependent protein kinase IV (CaMK IV) in mouse cerebellum. It has been documented that the thyroid hormone receptor (TR)/retinoid X receptor (RXR) heterodimer and thyroid hormone (TH) may be involved in the regulation of CaMK IV. To investigate whether As affects the TR/RXR heterodimer and TH, we determined As concentration in serum and cerebellum, 3,5,3’-triiodothyronine (T3) and thyroxin (T4) levels in serum, and expression of CaMK IV, TR and RXR in cerebellum of mice exposed to As. Cognition function was examined by the step-down passive avoidance task and Morris water maze (MWM) tests. Morphology of the cerebellum was observed by Hematoxylin-Eosin staining under light microscope. Our results showed that the concentrations of As in the serum and cerebellum of mice both increased with increasing As-exposure level. A significant positive correlation was found between the two processes. Adeficit in learning and memory was found in the exposed mice. Abnormal morphologic changes of Purkinje cells were observed in cerebellum of the exposed mice. Moreover, the cerebellar expressions of CaMK IV protein and the TRβ gene, and TRβ1 protein were significantly lower in As-exposed mice than those in controls. Subchronic exposure to As appears to increase its level in serum and cerebella of mice, impairing learning and memory and down-regulating expression of TRβ1 as well as down-stream CaMK IV. It is also suggested that the increased As may be responsible for down-regulation of TRβ1 and CaMK IV in cerebellum and that the down-regulated TRβ1 may be involved in As-induced impairment of learning and memory via inhibiting CaMK IV and its down-stream pathway.  相似文献   

8.
The aim of this study was to assess the prognostic value of the steroid hormone receptor expression, counting the retinoid X receptor (RXR) and thyroid hormone receptors (THRs), on the two different breast cancer (BC) entities: multifocal/multicentric versus unifocal. The overall and disease-free survival were considered as the prognosis determining aspects and analyzed by uni- and multi-variate analysis. Furthermore, histopathological grading and TNM staging (T = tumor size, N = lymph node involvement, M = distant metastasis) were examined in relation to RXR and THRs expression. A retrospective statistical analysis was carried out on survival-related events in a series of 319 sporadic BC patients treated at the Department of Gynecology and Obstetrics at the Ludwig-Maximillian’s University in Munich between 2000 and 2002. The expression of RXR and THRs, including its two major isoforms THRα1 and THRα2, was analyzed by immunohistochemistry and showed to have a significant correlation for both BC entities in regard to survival analysis. Patients with multifocal/multicentric BC were exposed to a significantly worse disease-free survival (DFS) when expressing RXR. Patients with unifocal BC showed a significantly worse DFS when expressing THRα1. In contrast, a statistically significant positive association between THRα2 expression and enhanced DFS in multifocal/multicentric BC was shown. Especially the RXR expression in multifocal/multicentric BC was found to play a remarkably contradictory role for BC prognosis. The findings imply the need for a critical review of possible molecular therapies targeting steroid hormone receptors in BC treatment. Our results strengthen the need to further investigate the behavior of the nuclear receptor family, especially in relation to BC focality.  相似文献   

9.
Triple negative breast cancer (TNBC) displays higher risk of recurrence and distant metastasis. Due to absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), TNBC lacks clinically established targeted therapies. Therefore, understanding of the mechanism underlying the aggressive behaviors of TNBC is required for the design of individualized strategies and the elongation of overall survival duration. Here, we supported a positive correlation between β1 integrin and malignant behaviors such as cell migration, invasion, and drug resistance. We found that silencing of β1 integrin inhibited cell migration, invasion, and increased the sensitivity to anti-cancer drug. In contrast, activation of β1 integrin increased cell migration, invasion, and decreased the sensitivity to anti-cancer drug. Furthermore, we found that silencing of β1 integrin abolished Focal adhesion kinese (FAK) mediated cell survival. Overexpression of FAK could restore cisplatin-induced apoptosis in β1 integrin-depleted cells. Consistent to in vitro data, β1 integrin expression was also positively correlated with FAK (p = 0.031) in clinical tissue. More importantly, β1 integrin expression was significantly correlated with patient outcome. In summary, our study indicated that β1 integrin could regulate TNBC cells migration, invasion, drug sensitivity, and be a potential prognostic biomarker in TNBC patient survival.  相似文献   

10.
Mechanical cues are employed to promote stem cell differentiation and functional tissue formation in tissue engineering and regenerative medicine. We have developed a Magnetic Force Bioreactor (MFB) that delivers highly targeted local forces to cells at a pico-newton level, utilizing magnetic micro- and nano-particles to target cell surface receptors. In this study, we investigated the effects of magnetically targeting and actuating specific two mechanical-sensitive cell membrane receptors—platelet-derived growth factor receptor α (PDGFRα) and integrin ανβ3. It was found that a higher mineral-to-matrix ratio was obtained after three weeks of magneto-mechanical stimulation coupled with osteogenic medium culture by initially targeting PDGFRα compared with targeting integrin ανβ3 and non-treated controls. Moreover, different initiation sites caused a differentiated response profile when using a 2-day-lagged magneto-mechanical stimulation over culture periods of 7 and 12 days). However, both resulted in statistically higher osteogenic marker genes expression compared with immediate magneto-mechanical stimulation. These results provide insights into important parameters for designing appropriate protocols for ex vivo induced bone formation via magneto-mechanical actuation.  相似文献   

11.
Numerous epidemiological studies have shown that subclinical hypothyroidism (SCH) can impair endothelial function and cause dyslipidemia. Studies have evaluated the effects of thyroid stimulating hormone (TSH) on endothelial cells, but the mechanism underlying the proatherosclerotic effect of increased TSH levels remains unclear. In the present study, SCH rat models were established in thyroidectomized Wistar rats that were given l-T4 daily. The results showed that in vivo, the expression of osteopontin (OPN) vascular cell adhesion molecule (VCAM-1), and levels of integrin αvβ3 in the aortic tissue in SCH and Hypothyroidism (CH) groups was higher than in the control group. However, the effect in the SCH group was higher than in the CH group. In vitro, results showed that different concentration and time gradients of TSH stimulation could increase the expression of OPN, VCAM-1, and integrin αvβ3, and this was accompanied by extracellular signal regulated kinase 1/2 (Erk1/2) and Akt activation in human umbilical vein endothelial cells (HUVECs). TSH induced elevation of these proatherosclerotic factors was partially suppressed by a specific Akt inhibitor but not by a specific Erk inhibitor. Findings suggested that the endothelial dysfunction caused by SCH was related to increased proatherosclerotic factors induced by TSH via Akt activation.  相似文献   

12.
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.  相似文献   

13.
Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.  相似文献   

14.
Hormone receptor expression patterns often correlate with infiltration of specific lymphocytes in tumors. Specifically, the presence of specific tumor-infiltrating lymphocytes (TILs) with particular hormone receptor expression is reportedly associated with breast cancer, however, this has not been revealed in epithelial ovarian cancer (EOC). Therefore, we investigated the association between hormone receptor expression and TILs in EOC. Here we found that ERα, AR, and GR expression increased in EOC, while PR was significantly reduced and ERβ expression showed a reduced trend compared to normal epithelium. Cluster analysis indicated poor disease-free survival (DFS) in AR+/GR+/PR+ subgroup (triple dominant group); while the Cox proportional-hazards model highlighted the triple dominant group as an independent prognostic factor for DFS. In addition, significant upregulation of FoxP3+ TILs, PD-1, and PD-L1 was observed in the triple dominant group compared to other groups. NanoString analyses further suggested that tumor necrosis factor (TNF) and/or NF-κB signaling pathways were activated with significant upregulation of RELA, MAP3K5, TNFAIP3, BCL2L1, RIPK1, TRAF2, PARP1, and AKT1 in the triple dominant EOC group. The triple dominant subgroup correlates with poor prognosis in EOC. Moreover, the TNF and/or NF-κB signaling pathways may be responsible for hormone-mediated inhibition of the immune microenvironment.  相似文献   

15.
16.
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.  相似文献   

17.
Adrenergic receptor β3 (ADRβ3) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of the ligand to ADRβ3 activates adenylate cyclase and increases cAMP in the cells. ADRβ3 is highly expressed in white and brown adipocytes and controls key regulatory pathways of lipid metabolism. Trp64Arg (W64R) polymorphism in the ADRβ3 is associated with the early development of type 2 diabetes mellitus, lower resting metabolic rate, abdominal obesity, and insulin resistance. It is unclear how the substitution of W64R affects the functioning of ADRβ3. This study was initiated to functionally characterize this obesity-linked variant of ADRβ3. We evaluated in detail the expression, subcellular distribution, and post-activation behavior of the WT and W64R ADRβ3 using single cell quantitative fluorescence microscopy. When expressed in HEK 293 cells, ADRβ3 shows a typical distribution displayed by other GPCRs with a predominant localization at the cell surface. Unlike adrenergic receptor β2 (ADRβ2), agonist-induced desensitization of ADRβ3 does not involve loss of cell surface expression. WT and W64R variant of ADRβ3 displayed comparable biochemical properties, and there was no significant impact of the substitution of tryptophan with arginine on the expression, cellular distribution, signaling, and post-activation behavior of ADRβ3. The obesity-linked W64R variant of ADRβ3 is indistinguishable from the WT ADRβ3 in terms of expression, cellular distribution, signaling, and post-activation behavior.  相似文献   

18.
A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.  相似文献   

19.
Inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1) is a substrate protein of the NO/cGMP-signaling pathway and forms a ternary complex with the cGMP-dependent protein kinase Iβ (PKGIβ) and the inositol triphosphate receptor I (IP3R-I). Functional studies about IRAG1 exhibited that IRAG1 is specifically phosphorylated by the PKGIβ, regulating cGMP-mediated IP3-dependent Ca2+-release. IRAG1 is widely distributed in murine tissues, e.g., in large amounts in smooth muscle-containing tissues and platelets, but also in lower amounts, e.g., in the spleen. The NO/cGMP/PKGI signaling pathway is important in several organ systems. A loss of PKGI causes gastrointestinal disorders, anemia and splenomegaly. Due to the similar tissue distribution of the PKGIβ to IRAG1, we investigated the pathophysiological functions of IRAG1 in this context. Global IRAG1-KO mice developed gastrointestinal bleeding, anemia-associated splenomegaly and iron deficiency. Additionally, Irag1-deficiency altered the protein levels of some cGMP/PKGI signaling proteins—particularly a strong decrease in the PKGIβ—in the colon, spleen and stomach but did not change mRNA-expression of the corresponding genes. The present work showed that a loss of IRAG1 and the PKGIβ/IRAG1 signaling has a crucial function in the development of gastrointestinal disorders and anemia-associated splenomegaly. Furthermore, global Irag1-deficient mice are possible in vivo model to investigate PKGIβ protein functions.  相似文献   

20.
Osteosarcoma is the most common type of primary malignant bone cancer, and it is associated with high rates of pulmonary metastasis. Integrin αvβ3 is critical for osteosarcoma cell migratory and invasive abilities. Chemokine (C-C motif) ligand 4 (CCL4) has diverse effects on different cancer cells through its interaction with its specific receptor, C-C chemokine receptor type 5 (CCR5). Analysis of mRNA expression in human osteosarcoma tissue identified upregulated levels of CCL4, integrin αv and β3 expression. Similarly, an analysis of records from the Gene Expression Omnibus (GEO) dataset showed that CCL4 was upregulated in human osteosarcoma tissue. Importantly, the expression of both CCL4 and integrin αvβ3 correlated positively with osteosarcoma clinical stages and lung metastasis. Analysis of osteosarcoma cell lines identified that CCL4 promotes integrin αvβ3 expression and cell migration by activating the focal adhesion kinase (FAK), protein kinase B (AKT), and hypoxia inducible factor 1 subunit alpha (HIF-1α) signaling pathways, which can downregulate microRNA-3927-3p expression. Pharmacological inhibition of CCR5 by maraviroc (MVC) prevented increases in integrin αvβ3 expression and cell migration. This study is the first to implicate CCL4 as a potential target in the treatment of metastatic osteosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号