首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributed output‐feedback fault detection and isolation (FDI) of nonlinear cascade process networks that can be divided into subsystems is considered. Based on the assumption that an exponentially convergent estimator exists for each subsystem, a distributed state estimation system is developed. In the distributed state estimation system, a compensator is designed for each subsystem to compensate for subsystem interaction and the estimators for subsystems communicate to exchange information. It is shown that when there is no fault, the estimation error of the distributed estimation system converges to zero in the absence of system disturbances and measurement noise. For each subsystem, a state predictor is also designed to provide subsystem state predictions. A residual generator is designed for each subsystem based on subsystem state estimates given by the distributed state estimation system and subsystem state predictions given by the predictor. A subsystem residual generator generates two residual sequences, which act as references for FDI. A distributed FDI mechanism is proposed based on residuals. The proposed approach is able to handle both actuator faults and sensor faults by evaluating the residual signals. A chemical process example is introduced to demonstrate the effectiveness of the distributed FDI mechanism. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4329–4342, 2017  相似文献   

2.
This study explores both the theoretical and experimental investigations of applying a continuum and noncontinuum state estimator to composition estimation in a distillation process with switching dynamics. In a hybrid distillation modeling, the column compositions are considered as continuum states while the operating modes are modeled as noncontinuum states. A moving horizon estimator (MHE), which has the capability to handle process constraints is developed for composition estimation in a distillation process under known switching mode criteria using the available temperature measurements. The performance of a MHE is shown to be better than that of EKF in handling process and measurement noise under switching dynamics. For some situations where the system operating mode transition is unknown, a new approach to state estimation under unknown switching functions is investigated. The proposed method combines a MHE for composition estimation with a mode change detector to detect a change in the system operating mode and an operating mode estimator to identify the functioning mode. In the presence of both the measurement noise and plant-model mismatch, the developed estimator is shown to be effective in estimating both the column composition and the system operating mode accurately.  相似文献   

3.
In this work, we consider distributed adaptive high‐gain extended Kalman filtering for nonlinear systems subject to data losses and delays in communications. Specifically, we consider a class of nonlinear systems that consist of several subsystems interacting with each other via their states. A local adaptive high‐gain extended Kalman filter is designed for each subsystem and the distributed estimators communicate to exchange the information. Each subsystem estimator takes the advantage of a predictor accounting for the delays and data losses simultaneously. The predictor of each subsystem is used to generate state predictions of interacting subsystems for interaction compensation. To get a reliable prediction, the predictors are designed based on a prediction‐update algorithm. The convergence of the proposed distributed state estimation is ensured under sufficient conditions handling communication delays and data losses. Finally, a chemical process example is used to evaluate the applicability and effectiveness of the proposed design. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4321–4333, 2016  相似文献   

4.
An appropriate subsystem configuration is a prerequisite for a successful distributed control/state estimation design. Existing subsystem decomposition methods are not designed to handle simultaneous distributed estimation and control. In this article, we address the problem of subsystem decomposition of general nonlinear process networks for simultaneous distributed state estimation and distributed control based on community structure detection. A systematic procedure based on modularity is proposed. A fast folding algorithm that approximately maximizes the modularity is used in the proposed procedure to find candidate subsystem configurations. Two chemical process examples of different complexities are used to illustrate the effectiveness and applicability of the proposed approach. © 2018 American Institute of Chemical Engineers AIChE J, 65: 904–914, 2019  相似文献   

5.
An inferential state estimation scheme based on extended Kalman filter (EKF) with optimal selection of sensor locations using principal component analysis (PCA) is presented for composition estimation in multicomponent reactive batch distillation. The properties of PCA are exploited to provide the most sensitive dynamic temperature measurement information of the process to the estimator for accurate estimation of compositions. The state estimator is supported by a simplified dynamic model of reactive batch distillation that includes component balance equations together with thermodynamic relations and reaction kinetics. The performance of the proposed scheme is evaluated by applying it for composition estimation on all trays, reboiler, reflux drum and products of a reactive batch distillation column, in which ethyl acetate is produced through an esterification reaction between acetic acid and ethanol. This quaternary system with azeotropism is highly nonlinear and typically suited for implementation of the proposed scheme. The results demonstrate that the proposed EKF estimation scheme with optimal temperature sensor configuration is effective for inferential estimation of compositions in multicomponent reactive batch distillation.  相似文献   

6.
Distributed state estimation plays a very important role in process control. Improper subsystem decomposition for distributed state estimation may increase the computational burdens, degrade the estimation performance, or even deteriorate the observability of the entire system. The subsystem decomposition problem for distributed state estimation of nonlinear systems is investigated. A systematic procedure for subsystem decomposition for distributed state estimation is proposed. Key steps in the procedure include observability test of the entire system, observable states identification for each output measurement, relative degree analysis and sensitivity analysis between measured outputs and states. Considerations with respect to time‐scale multiplicity and direct graph are discussed. A few examples are used to illustrate the applicability of the methods used in different steps. The effectiveness of the entire distributed state estimation configuration procedure is also demonstrated via an application to a chemical process example used in coal handling and preparation plants. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1995–2003, 2016  相似文献   

7.
Distributed architectures wherein multiple decision-making units are employed to coordinate their decision-making/actions based on real-time communication have become increasingly important for monitoring processes that have large scales and complex structures. Typically, the development of a distributed monitoring scheme involves two key steps, that is, the decomposition of the process into subsystems, and the design of local monitors based on the configured subsystem models. In this article, we propose a distributed process monitoring approach that tackles both steps for large-scale processes. A data-driven process decomposition approach is proposed by leveraging community structure detection to divide variables into subsystems optimally via finding a maximal value of the metric of modularity. A two-layer distributed monitoring scheme is developed where local monitors are designed based on the configured subsystems of variables using canonical correlation analysis. Inner-subsystem interactions and inter-subsystem interactions are tackled by the two layers separately, such that the sensitivity of this monitoring scheme to certain types of faults is improved. We utilize a numerical example to illustrate the effectiveness and superiority of the proposed method. It is then applied to a simulated wastewater treatment process.  相似文献   

8.
谢苗苗  张浪文  谢巍 《化工学报》2021,72(3):1557-1566
利用社区发现算法研究了一种复杂非线性化工系统的子系统分解方法,并进行了分布式模型预测控制设计。引入信息图论的节点表示系统的状态、输入和输出变量,构建非线性过程系统的加权有向图,节点通过加权边连接,加权反映了节点间连接的强度,因而能够同时反映系统内部的连通性和连接强度。利用社区结构发现算法将所有变量分成子系统的群组,使得每个组内的关联比不同组间的相互作用强,从而得到复杂化工过程系统的子系统分解。针对连续搅拌反应釜过程,实施子系统分解,并设计分布式模型预测控制算法,结果表明,所提出的子系统分解方法更能考虑子系统之间的连接权重,得到更有利于分布式模型预测控制的子系统划分,提升系统控制的性能。  相似文献   

9.
A critical aspect of developing Bayesian state estimators for hybrid systems, that involve a combination of continuous and discrete state variables, is to have a reasonably accurate characterization of the stochastic disturbances affecting their dynamics. Recently, Bavdekar et al. (2011) have proposed a maximum likelihood (ML) based framework for estimation of the noise covariance matrices from operating input–output data when an EKF is used for state estimation. In this work, the ML framework is extended to estimation of the noise covariance matrices associated with autonomous hybrid systems, and, to a wider class of recursive Bayesian filters. Under the assumption that the innovations generated by an estimator form a white noise sequence, the proposed ML framework computes the noise covariance matrices such that they maximize the log-likelihood function of the estimator innovations. The efficacy of the proposed scheme is demonstrated through the simulation and experimental studies on the benchmark three-tank system.  相似文献   

10.
In this article, we address a partition-based distributed state estimation problem for large-scale general nonlinear processes by proposing a Kalman-based approach. First, we formulate a linear full-information estimation design within a distributed framework as the basis for developing our approach. Second, the analytical solution to the local optimization problems associated with the formulated distributed full-information design is established, in the form of a recursive distributed Kalman filter algorithm. Then, the linear distributed Kalman filter is extended to the nonlinear context by incorporating successive linearization of nonlinear subsystem models, and the proposed distributed extended Kalman filter approach is formulated. We conduct rigorous analysis and prove the stability of the estimation error dynamics provided by the proposed method for general nonlinear processes consisting of interconnected subsystems. A chemical process example is used to illustrate the effectiveness of the proposed method and to justify the validity of the theoretical findings. In addition, the proposed method is applied to a wastewater treatment process for estimating the full-state of the process with 145 state variables.  相似文献   

11.
The design of a composite control system for nonlinear singularly perturbed systems using model predictive control (MPC) is described. Specifically, a composite control system comprised of a “fast” MPC acting to regulate the fast dynamics and a “slow” MPC acting to regulate the slow dynamics is designed. The composite MPC system uses multirate sampling of the plant state measurements, i.e., fast sampling of the fast state variables is used in the fast MPC and slow‐sampling of the slow state variables is used in the slow MPC. Using singular perturbation theory, the stability and optimality of the closed‐loop nonlinear singularly perturbed system are analyzed. A chemical process example which exhibits two‐time‐scale behavior is used to demonstrate the structure and implementation of the proposed fast–slow MPC architecture in a practical setting. © 2012 American Institute of Chemical Engineers AIChE J, 58: 1802–1811, 2012  相似文献   

12.
Composition estimation plays very important role in plant operation and control. Extended Kalman filter (EKF) is one of the most common estimators, which has been used in composition estimation of reactive batch distillation, but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium, which is difficult to initialize and tune. In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system (ANFIS), which is a model base estimator, is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation. The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics. The mathematical model is verified by pilot plant data. The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation. The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.  相似文献   

13.
This work considers distributed predictive control of large‐scale nonlinear systems with neighbor‐to‐neighbor communication. It fulfills the gap between the existing centralized Lyapunov‐based model predictive control (LMPC) and the cooperative distributed LMPC and provides a balanced solution in terms of implementation complexity and achievable performance. This work focuses on a class of nonlinear systems with subsystems interacting with each other via their states. For each subsystem, an LMPC is designed based on the subsystem model and the LMPC only communicates with its neighbors. At a sampling time, a subsystem LMPC optimizes its future control input trajectory assuming that the states of its upstream neighbors remain the same as (or close to) their predicted state trajectories obtained at the previous sampling time. Both noniterative and iterative implementation algorithms are considered. The performance of the proposed designs is illustrated via a chemical process example. © 2014 American Institute of Chemical Engineers AIChE J 60: 4124–4133, 2014  相似文献   

14.
Studies on moving horizon estimation (MHE) for applications featuring process uncertainties and measurement noises that follow time-dependent non-Gaussian distributions are absent from the literature. An extended version of MHE (EMHE) is proposed here to improve the estimation for a general class of non-Gaussian process uncertainties and measurement noises at no significant additional computational costs. Gaussian mixture models are introduced to the proposed EMHE to approximate offline the non-Gaussian densities of these random variables. Moreover, the proposed EMHE-based estimation scheme can be updated online by re-approximating the corresponding Gaussian mixture models when the distributions of noises/uncertainties change due to sudden or seasonal changes in the operating conditions. These updates are not expected to increase the central processing unit times considerably. Illustrative case studies featuring open-loop operation and closed-loop control using nonlinear model predictive control have shown that the practical features offered by EMHE resulted in significant improvements in state estimation and online control.  相似文献   

15.
In this article, state feedback predictive controller for hybrid system via parametric programming is proposed. First, mixed logic dynamic (MLD) modeling mechanism for hybrid system is analyzed, which has a distinguished advantage to deal with the logic rules and constraints of a plant. Model predictive control algorithm with moving horizon state estimator (MHE) is presented. The estimator is adopted to estimate the current state of the plant with process disturbance and measurement noise, and the state estimated are utilized in the predictive controller for both regulation and tracking problems of the hybrid system based on MLD model. Off-line parametric programming is adopted and then on-line mixed integer programming problem can be treated as the parameter programming with estimated state as the parameters. A three tank system is used for computer simulation, results show that the proposed MHE based predictive control via parametric programming is effective for hybrid system with model/olant mismatch, and has a potential for the engineering applications.  相似文献   

16.
We focus on output feedback control of distributed processes whose infinite dimensional representation in appropriate Hilbert subspaces can be decomposed to finite dimensional slow and infinite dimensional fast subsystems. The controller synthesis issue is addressed using a refined adaptive proper orthogonal decomposition (APOD) approach to recursively construct accurate low dimensional reduced order models (ROMs) based on which we subsequently construct and couple almost globally valid dynamic observers with robust controllers. The novelty lies in modifying the data ensemble revision approach within APOD to enlarge the ROM region of attraction. The proposed control approach is successfully used to regulate the Kuramoto‐Sivashinsky equation at a desired steady state profile in the absence and presence of uncertainty when the unforced process exhibits nonlinear behavior with fast transients. The original and the modified APOD approaches are compared in different conditions and the advantages of the modified approach are presented. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4595–4611, 2013  相似文献   

17.
Extended Kalman filters (EKF) have been widely employed for state and parameter estimation in chemical engineering systems. Gao et al. [Gao, F., Wang, F. and Li, M. (1999). Ind. Eng. Chem. Res., 38, 2345-2349] have proposed the use of EKF for control computation using a neural network representation of the system in a discrete-time framework. In the present study, an EKF controller is proposed in a continuous time framework with models incorporating different levels of process knowledge. The problem of process-model mismatch is handled by incorporating EKF-based state and/or parameter estimation along with control computation. A batch reactor temperature control problem for a highly exothermic reaction between maleic anhydride and hexanol to form hexyl monoester of maleic acid is considered as a test bed to evaluate the performance of the proposed control schemes. Three different models are considered, namely the first principles model, a reduced-order process model, and an artificial neural network (ANN) model for formulation of the control schemes. The performance of the proposed control scheme using first principles model is compared to that of generic model control, and a similar performance is achieved. The present study illustrates the usefulness of the proposed control schemes and can be easily extended to general chemical engineering systems.  相似文献   

18.
This article deals with the property control of polymer product in a semibatch MMA/MA copolymerization reactor by applying the extended Kalman filter (EKF) based nonlinear model predictive control (MPC). In addition to the feeding of the more reactive monomer, the solvent is continuously supplied so as to maintain the viscosity of the reaction mixture within a reasonable range. This measure then provides favorable conditions not only for the on-line estimation with the EKF but also for the performance of the EKF based nonlinear MPC. Indeed, the improved performance of the state estimator is confirmed by experiment under isothermal and nonisothermal conditions over a prolonged reaction time. On the basis of the estimated state, the EKF based nonlinear MPC is implemented to the semibatch reactor to produce copolymers with desired properties. The experimental results clearly demonstrate the superiority of the present control strategy compared to the result of our previous work obtained without having additional feed of solvent.  相似文献   

19.
A moving horizon estimation (MHE) approach to simultaneously estimate states and parameters is revisited. Two different noise models are considered, one with measurement noise and one with additional state noise. The contribution of this article is twofold. First, we transfer the real-time iteration approach, developed in Diehl et al. (2002) for nonlinear model predictive control, to the MHE approach to render it real-time feasible. The scheme reduces the computational burden to one iteration per measurement sample and separates each iteration into a preparation and an estimation phase. This drastically reduces the time between measurements and computed estimates. Secondly, we derive a numerically efficient arrival cost update scheme based on one single QR-factorization. The MHE algorithm is demonstrated on two chemical engineering problems, a thermally coupled distillation column and the Tennessee Eastman benchmark problem, and compared against an Extended Kalman Filter. The CPU times demonstrate the real-time applicability of the suggested approach.  相似文献   

20.
This article addresses network decomposition for distributed model predictive control (DMPC), which includes two improvements. First, in the weighted input–output bipartite graph construction of a process network, a new measure called frequency affinity is proposed to characterize the input–output interaction considering the full dynamic response and structural information of a process. Then, in community detection, which is used to decompose the process network, the gap metric is added to quantify stability and the loss of control performance of each subsystem. Through the proposed decomposition, the obtained subsystems can be dynamically well-decoupled since both transient and steady-state responses are measured by the frequency affinity. As structural information is considered, the decomposition is consistent with the process physical topology. Furthermore, the utilization of gap metric can facilitate controller design for DMPC. Case studies on a reactor separator process and an air separation process demonstrate the effectiveness of the proposed decomposition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号