首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
AlCoFeNiTiZn high entropy alloy was successfully produced in powder form by the mechanical alloying process. The ball-milled alloyed product was characterized by X-ray diffractometry, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy techniques, which indicated that after 120 h of milling, the solid solution was formed as predicted by thermodynamic calculations. Mechanical alloying began to form the BCC phase almost at 30 h and the FCC phase after about 30 h. Nucleation and growth were the processes involved in the formation of these phases, as shown by the Johnson-Mehl-Avrami kinetic model. Sintering was then used to fabricate the alloy in bulk metallic form. The powders were cold pressed and sintered after 120 h of mechanical alloying using a tube furnace with a controlled atmosphere at 500 °C. A similar FCC + BCC phase mixture was present after sintering. The sintered sample also contained minor amounts of Gahnite (ZnAl2O4) spinel material. DSC analysis revealed that recrystallization occurred at 280 °C. The as-milled and as-sintered alloys exhibit semi-hard magnetic properties measured by vibrating sample magnetometer (VSM), with saturation magnetization values of 39.14 and 65.78 emu/g, respectively.  相似文献   

2.
周鹏飞  刘彧  余永新  肖代红 《材料导报》2016,30(22):95-98, 103
采用放电等离子烧结方法(SPS)制备了AlCoCrFeNi高熵合金。通过差热分析、密度测试、X射线衍射、扫描电镜及力学性能测试,研究了SPS烧结温度对AlCoCrFeNi高熵合金的致密化行为、组织演变及力学性能影响。结果表明,随着SPS烧结温度的升高,材料的致密度与抗压缩强度明显提高。1200℃烧结后,AlCoCrFeNi高熵合金的致密度达到99.6%,抗压缩强度达到2195MPa,屈服强度达到1506MPa。在SPS烧结过程中,高熵合金从双相结构(BCC+B2)转变为三相结构(BCC+B2+FCC)。  相似文献   

3.
Hydroxyapatite coatings were synthesized electrochemically onto stainless steel. In this study, the composition and morphology of the coatings changed with the deposition and sintering conditions. The electrolyte was kept close to the composition of simulated body fluid with an adjusted pH of 8.0. Deposition temperature affected the purity of the deposits with higher temperatures (65 °C) giving better coatings. The sintering techniques were also shown to affect the deposits, with x-ray diffraction patterns showing well-defined peaks for hydroxyapatite when sintering under vacuum conditions. Coating density and corrosion resistance was improved when applying a double-layer coating technique versus a single-layer. Grain sizes were 30 to 40 nm even after sintering of these coatings in air. The formed coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy.  相似文献   

4.
M. Naka  T. Shibayanagi  M. Maeda  H. Mori  M. Mori 《Vacuum》2006,80(11-12):1316
Nanostructured Cr–xNi alloys were prepared by magnetron sputtering in low pressure argon gas, where x varied from 0 to 20 at%. The structure and microhardness of the alloys were observed by TEM (microscopy) and Vickers hardness testing, respectively. The crystal structure of the sputtered alloys was BCC. The addition of nickel to chromium decreases the grain size of the Cr–Ni alloys and the grain sizes of the alloys changed from 88 nm for Cr to 30 nm for Cr-20 at% Ni alloys. The microhardness of the Cr–Ni alloys showed the maximum around 5 at% Ni. The increase in nickel content above 5 at% lowers the microhardness of the alloys, although the grain size of the Cr–Ni decreases. The abnormal tendency against grain size change was discussed in terms of the characteristics of the grain boundaries in the alloys.  相似文献   

5.
《Advanced Powder Technology》2020,31(4):1693-1701
In this investigation, the synthesis of equiatomic AlCoFeNi, AlCoFeNiMo, AlCoFeNiTi, and AlCoFeNiMoTi high entropy alloys, fabricated by mechanical alloying and conventional sintering processes is presented aiming to elucidate the effect of Mo and Ti additions on the properties of the AlCoFeNi base system. X-ray diffraction studies revealed that after 15 h of milling, only BCC and FCC structures were formed. It was also found that by increasing the crystallite size after sintering, phase transformations and composition variations were observed for all the systems studied but BCC and FCC structures prevailed. Further, the addition of the different alloying elements had a significant effect on the microhardness of the HEAs and particularly, the addition of Mo and Ti to form the AlCoFeNiMoTi system presented the highest value of 894 HV0.2. Finally, it was also found that Mo- containing alloys presented considerable porosity.  相似文献   

6.
《Advanced Powder Technology》2020,31(5):1985-1993
Thermal stability of mechanically alloyed nanocrystalline AlxCoCrFeNi (x = 0, 0.3, 0.6, 1 mol) high entropy alloys (HEAs) has been investigated for the low and intermediate temperature range of 673–1073 K. Single phase FCC structure is observed in the as milled CoCrFeNi. A mixture of FCC and BCC phases is exhibited by × = 0.3, 0.6 and 1, alloys where the volume fraction of BCC increases with increasing Al content. Phase evolution in heat-treated AlxCoCrFeNi HEAs proceeds via increasing BCC fraction at 673 K, followed by subsequent reduction at elevated temperatures. For each alloy, the major phase observed in as milled condition and it is retained even after prolonged exposure at the 1073 K. Al favors the formation of the BCC phase due to its high affinity to form ordered B2 structures with constituent elements Co, Fe and Ni. Thermal exposure of AlxCoCrFeNi HEAs also leads to the formation of Cr7C3, owing to the higher negative free energy of carbide formation for Cr among other constituents. Transmission electron microscopy (TEM) investigations substantiated that nanostructure of milled powder is maintained even after the heat treatment. Grain growth factor for quinary HEAs is relatively lower than quaternary CoCrFeNi owing to their slower rates of diffusion.  相似文献   

7.
Most of multi-component high entropy alloys were designed as equi-atomic or near equi-atomic and were mainly prepared by vacuum arc melting. The present paper reports synthesis of inequi-atomic Co0.5FeNiCrTi0.5 high entropy alloy by mechanical alloying and spark plasma sintering (MA–SPS). Alloying behavior, microstructure and properties of Co0.5FeNiCrTi0.5 alloy are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and instron testing system, respectively. Both BCC and FCC crystal structure phases are observed after MA, while a FCC phase and additional sigma phase are noticed after SPS. Moreover, numerous nanostructured phases are founded in the alloy after consolidated by SPS. The alloy with a density of 99.15% after SPS exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.65 GPa, 2.69 GPa, 10.0% and 846 HV, respectively. The fracture mechanism of this alloy is observed as cleavage fracture and intergranular fracture.  相似文献   

8.
《Advanced Powder Technology》2014,25(4):1334-1338
An equiatomic CoCrFeNiMnAl high-entropy alloy was synthesized by mechanical alloying, and alloying behaviors, microstructure and annealing behaviors were investigated. It was found that a solid solution with refined microstructure of 20 nm in grain size could be obtained after 30 h milling. As-milled powder transformed into a face-centered cubic phase above 500 °C. The as-milled powder was subsequently consolidated by spark plasma sintering at 800 °C, BCC phase and FCC phase coexisted in the consolidated HEA, which had excellent properties in Vickers hardness of 662 HV and compressive strength of 2142 MPa.  相似文献   

9.
通过XRD分析、SEM观察和压缩实验研究了不同Cr含量对Ti0.5AlCoFeNiCrx(x为摩尔比,x=0,0.5,1,1.5,2,3)高熵合金微观组织结构与力学性能的影响。结果表明:当合金不含Cr时,呈现单一的体心立方结构;当加入Cr元素后,出现了另一种富Cr的体心立方相。随着Cr含量的增加,组织从树枝晶逐渐转变到亚共晶、共晶和过共晶组织,表明Cr能促使合金发生共晶反应。适量的Cr元素能显著提高合金的压缩力学性能,其中Ti0.5AlCoFeNiCr0.5合金具有最好的压缩强度和塑性。  相似文献   

10.
Starting with elemental (pre-mixed) powders for producing shaped powder metallurgy alloys provides some advantages over a pre-alloyed system. The premixed powders are softer than prealloyed powders and therefore by using premixed powders it is possible to have higher compact densities and within a longer die life. In this research work, elemental aluminum powder was mixed with copper and magnesium in various ratios. They were compacted, sintered and heat treated in order to produce light but strong Al-based powder metallurgy alloys. The main focus of this paper is on the effects of micro to macro scale addition of magnesium on the aging response of Al4Cu alloys. Four per cent Cu gives Al powder metallurgy alloy a good control of sintering and a large space for solution treatment. Minor addition of Mg with little amount of Fe, comes from the based Al and Cu powders, enhances the hardness values of Al4Cu powder metallurgy alloys. Highest hardness value was 118 HB obtained from 24 h aged Al4Cu2Mg alloy.  相似文献   

11.
The effect of cobalt powder morphology on the microstructure of WC-Co hard alloys produced by sintering cobalt + tungsten carbide powder mixtures has been studied using X-ray diffraction, laser diffraction, scanning electron microscopy, density measurements, and Vickers microhardness tests. The results indicate that, under identical sintering conditions, the densest and most homogeneous microstructure is formed in hard alloys sintered using cobalt powders consisting of rounded particles. The use of cobalt powders with dendritic morphologies impedes the homogenization of Co + WC powder mixtures and preparation of pore-free WC-Co hard alloys.  相似文献   

12.
《Advanced Powder Technology》2020,31(12):4619-4631
Refractory high-entropy alloys (HEAs) possess outstanding mechanical strength at room and high temperature but lack the room temperature ductility. A novel refractory equiatomic powder combination of WMoVCrTa was selected and verified for the feasibility of formation of solid solutions or else bulk-metallic glasses (BMGs) in the alloy based on the Guo et al.’s criteria and mismatch entropy criterion. The powder combination satisfies the above two criteria to crystallize in solid solution phases and inhibit the BMGs. Mechanical alloying characteristics of the powder mixture were determined. The particle size of the powder mixture decreased continuously during initial milling and later increased after 32 h of mechanical alloying. A homogeneous mixture was obtained after milling for 64 h. Crystallite sizes of the constituent elements in the powder mixture decreased continuously on progressive milling. A nanocrystalline powder was obtained by mechanical alloying. The powder milled for 64 h revealed a major BCC1, a minor BCC2 and small unknown phases. The lattice parameters of those BCC1 and BCC2 phases are 3.16 Å and 2.88 Å respectively. The alloy ingots were fabricated from the milled powder by vacuum arc melting technique followed by heat treatment. The ingot crystallizes in three phases such as a major BCC1, a minor BCC2 and a minor laves phase. The lattice parameters of these BCC1 and BCC2 phases are 3.05 Å and 2.85 Å respectively. Thereby, the BCC1 lattice of the milled powder contracts slightly after ingot fabrication. A fine combination of compressive stress and strain of 995 MPa and 6.2% respectively was achieved by the alloy at room temperature. Vickers hardness of the alloy was as high as 773 ± 20HV0.5. The density of the alloy was 11.52 g/cm3. The combination of excellent room temperature stress-strain and high hardness properties can enable the refractory HEA as a potential candidate for structural applications.  相似文献   

13.
We have studied the effect of sintering temperature on the structural and phase transformations of alloys produced by the spark plasma sintering of Ti + 23.5 at % Al + 21 at % Nb powder mixtures at temperatures in the range 1100–1550°C. The sintered alloys have been characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy (elemental X-ray mapping). The alloys sintered at temperatures of 1100 and 1200°C have been shown to have a nonuniform microstructure. According to electron microscopy results, the alloys consist of grains of the α2 and Nb2Al phases and small precipitates of the O-phase (intermetallic compound Ti2AlNb). In addition, there are particles of unreacted niobium and titanium. The alloys sintered at a temperature of 1300°C have a uniform lamellar structure.  相似文献   

14.
Processing of porous Ti and Ti5Mn foams by spark plasma sintering   总被引:1,自引:0,他引:1  
Titanium and its alloys are one of the best metallic biomaterials to be used for implant application. In this study, porous Ti and Ti5Mn alloy with different porosities were successfully synthesized by powder metallurgy process with the addition of NH4HCO3 as space holder and TiH2 as foaming agent. The consolidation of powder was achieved by spark plasma sintering process (SPS) at 16 MPa and pressureless conditions. The morphology of porous structure was investigated by using scanning electron microscopy (SEM) and X-ray micro-tomography (μ-CT). Nano-indentation tester was used to evaluate Young’s modulus of the porous Ti and Ti5Mn alloy. Experimental results showed that pure Ti sample, which sintered under pressure of 16 MPa, full relative density was achieved even at a relative low sintering temperature 750 °C; however, in the case of pressureless condition at sintering temperature 1000 °C the porosity was 53% and Young’s modulus was 40 GPa. The Ti5Mn alloy indicated a good pore distribution, and the porosity decreased from 56% to 21% by increasing the sintering temperature from 950 °C to 1100 °C. Young’s modulus was increased from 35 GPa to 51.83 GPa with increasing of the sintering temperatures from 950 °C to 1100 °C.  相似文献   

15.
Oxide dispersion strengthened CoCrFeMnNi high-entropy alloys(ODS-HEAs)were prepared using two different powder preparation methods classified by yttrium addition strategy to investigate the effects of in-situ and ex-situ oxide dispersoid formation on the microstructure and mechanical properties.System-atic microstructural analysis was carried out by X-ray diffraction(XRD),electron backscattered diffraction(EBSD),high-resolution transmission electron microscopy(HRTEM),atom probe tomography(APT),and small-angle neutron scattering(SANS).Cryo-milled powder analysis,grain structure evolution after spark plasma sintering,dispersoid characteristics,and matrix/dispersoid interface structure analysis of the in-situ and ex-situ dispersoids within the high-entropy alloy(HEA)matrix were performed.The in-situ dispersoid formation was dominantly observed in the Y-alloyed ODS-HEA through the construction of a coherent interface relationship with complex chemical composition,leading to an increase in the Zener pinning forces on the grain boundary movement.ODS-HEA with in-situ oxide dispersoids enhanced the formation of ultrafine-grained structures with an average diameter of330 nm at a sintering temperature of 1173 K.This study shows that the Y pre-alloying method is efficient in achieving fine coherent dis-persoids with an ultrafine-grained structure,resulting in an enhancement of the tensile strength of the CoCrFeMnNi HEA.  相似文献   

16.
M. Klimenkov  K. Bade 《Thin solid films》2009,517(24):6593-5293
Electrodeposited Ni-W alloys have been investigated in the as-deposited state by transmission electron microscopy in order to investigate the microstructural features in dependence of the tungsten content. Within the tungsten content range from 7 at.% up to 12 at.%, the microstructure is nanocrystalline characterized by a bimodal grain size distribution, consisting out of 20 to 200 nm sized grains and also larger grains with several 100 nm characteristic dimension. No clear trend in microstructure formation is visible with W content or deposition conditions in the investigated W content range. Only solid solution phase characteristics were observed. The lattice constant is 0.360 nm for 12 at.% W as derived from electron diffraction for the solid solution face centered cubic structure. Larger grains show twinning and stacking faults. Voids with diameter of a few nm were detected along with some multiple twinned particles, indicating high stress level during growth. About 2 at.% difference in the alloy composition from grain to grain was measured.  相似文献   

17.
Pure anatase TiO2 nanoparticles were synthesized by microwave assisted sol–gel method and further characterized by powder X-ray diffraction (XRD), energy dispersive x-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Visible spectrophotometer, SEM images showed that TiO2 nanoparticles were porous structure. The XRD patterns indicated that TiO2 after annealed at 300 °C for 3 h was mainly pure anatase phase. The crystallite size was in the range of 20–25 nm, which is consistent with the results obtained from TEM images. Microwave heating offers several potential advantages over conventional heating for inducing or enhancing chemical reactions.  相似文献   

18.
《Materials Letters》2007,61(8-9):1801-1804
Silver (Ag) nanorods with average diameters of 20 nm and lengths up to 250 nm were successfully prepared in large scale using hydroxyethyl cellulose (HEC) as a template reducing silver nitrate by γ-irradiation. When we changed the irradiation time to get a different absorption dose at the same dose rate, we can find that the silver nanorods have been transferred into a larger size and another morphology. The particle size and morphology can be changed by choosing different absorption doses under the same dose rate. The products were characterized by transmission electron microscopy (TEM), electron diffraction (ED) analysis, field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

19.
《Materials Letters》2007,61(4-5):1218-1222
Injection molded Fe sintered bodies were fabricated using two kinds of Fe powders which have an average size of 50 nm and a diameter of 3 μm, respectively. Using Fe powder of about 50 nm in diameter, comparatively dense bodies (94–97%) were obtained even at a low sintering temperature (600 °C–700 °C), whereas the Fe sintered body (1100 °C) using about 3 μm Fe powder showed relatively low density (about 93%). In the sintered bodies using 50 nm Fe powders, the grain size increased as the sintering temperature increased, but the values of hardness decreased. In the sample sintered at 650 °C, the values of relative density and grain size were 96% and 0.97 μm, respectively. The minimum value of wear depth was obtained due to the combination of fine grain size and comparatively high relative density.  相似文献   

20.
Body-centered-cubic (BCC) high entropy alloys (HEAs) usually exhibit high strength but poor ductility. To overcome such strength-ductility trade-off, a novel (FeCr)45(AlNi)50Co5 HEA was presented in this paper, which was designed and fabricated with mechanical alloying (MA) followed by spark plasma sintering (SPS), and has a heterogeneous microstructure with multi-scale precipitates. Electron microscopy characterization revealed that the sizes of the precipitates range from nano (<300 nm), sub-micron (300~800 nm) to micron (>1 μm). The bulk HEA exhibits excellent mechanical properties, of which the compressive yield strength, fracture strength, and plasticity at room temperature can reach 1508 MPa, 3106 MPa and 30.4 %, respectively, which are much higher than that of most HEAs prepared by Powder Metallurgy reported in the literatures, suggesting that the HEA developed is highly promising for engineering applications. The excellent mechanical properties of the bulk HEA can be attributed to that the multi-scale precipitates are fully coherent with the matrix, which could reduce the misfit strain at the interface, and relieve the stress concentration during deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号