首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Based on theoretical analysis of PCM (Phase Change Material) solidification process,the model of improved void cavity distribution tending to high temperature region is established.Numerical results are compared with NASA (National Aeronautics and Space Administration) results.Analysis results show that the outer wall temperature,the melting ratio of PCM and the temperature gradient of PCM canister,have great difference in different void cavity distribution.The form of void distribution has a great effect on the process of phase change.Based on simulation results under the model of improved void cavity distribution,phase change heat transfer process in thermal storage container is analyzed.The main goal of the improved designing for PCM canister is to take measures in reducing the concentration distribution of void cavity by adding some foam metal into phase change material.  相似文献   

2.
IlltroductionSolar dynamic power modules (SDPM) with phasechange material (PCM) is a vital solution to ensureuninterrupted power supply for low-earth orbitapplication. The advantage of SDPM is its longerlifehme and higher efficiency. Longer lifetime results insubstanhal savings in hardware replacement, launch, andon-orbit installation costs. Because of SDPM's higherefficiency, its solar collection area is only about 25percent of that for a PV system. This would allowspacecraft operatin…  相似文献   

3.
热管式吸热器单元热管传热的数值模拟分析   总被引:1,自引:1,他引:1  
热管式吸热器的热性能分析对吸热器设计有着重要意义,但由于其相变过程与热管传热的耦合作用十分复杂,至今仍是很少有人深入研究的领域。本文基于焓法建立单元热管耦合传热的物理和数学模型,模拟计算了热管壁温、蓄热容器壁温、循环工质出口温度及相变材料熔化率等参数,并与基本型吸热器进行比较,验证了热管吸热器明显改善了温度分布的均匀性和相变材料的熔化率。  相似文献   

4.
太阳能吸热器换热管蓄热数值模拟与试验研究   总被引:2,自引:0,他引:2  
对以高温共晶盐LiF—CaF2为相变材料(PCM)和以干空气为工质的相变蓄热系统,采用焓方法建立了以控制体单元为对象的单管相变蓄热模型,并对系统进行了数值分析,得到了循环工质气体出口温度、相变材料容器最高温度和平均壁温等参数的瞬态变化曲线,实验研究了吸热器换热管的蓄傲热性能,分析了工质进口温度、输入热流级工质流量对工质出口温度、PCM容器平均壁温及最高壁温的影响。计算结果和试验表明单元换热管的蓄傲热性能达到了设计要求,试验结果与数值计算吻合良好。  相似文献   

5.
The thermal and heat transfer characteristics of lauric acid during the melting and solidification processes were determined experimentally in a vertical double pipe energy storage system. In this study, three important subjects were addressed. The first one is temperature distributions and temporal temperature variations in the radial and axial distances in the phase change material (PCM) during phase change processes. The second one is the thermal characteristics of the lauric acid, which include total melting and total solidification times, the nature of heat transfer in melted and solidified PCM and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition parameters. The final one is to calculate the heat transfer coefficient and the heat flow rate and also discuss the role of Reynolds and Stefan numbers on the heat transfer parameters. The experimental results proved that the PCM melts and solidifies congruently, and the melting and solidification front moved from the outer wall of the HTF pipe (HTFP) to the inner wall of the PCM container in radial distances as the melting front moved from the top to the bottom of the PCM container in axial distances. However, it was difficult to establish the solidification proceeding at the axial distances in the PCM. Though natural convection in the liquid phase played a dominant role during the melting process due to buoyancy effects, the solidification process was controlled by conduction heat transfer, and it was slowed by the conduction thermal resistance through the solidified layer. The results also indicated that the average heat transfer coefficient and the heat flow rate were affected by varying the Reynolds and Stefan numbers more during the melting process than during the solidification process due to the natural convection effect during the melting process.  相似文献   

6.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

7.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

8.
高温固液相变蓄热容器是空间太阳能动力装置吸热—储热器的关键部件。作为相变材料(PCM)的氟盐在凝固时体积收缩很大,从而在PCM容器内形成空穴。空穴的存在增大了传热热阻,还可能使PCM容器产生“热斑”和“热松脱”现象。该文建立了微重力下基于焓法形式的二维数学模型和一个改进的空穴模型,提出了计算相变过程中空穴体积变化及空穴调整的算法。预测了PCM容器在一个轨道周期内的空穴分布。计算结果有助于解决PCM容器的“热斑”和“热松脱”问题。  相似文献   

9.
Thermal performance characteristics of a eutectic mixture of lauric and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipe-energy storage system. This study deals with three important subjects: The first one is to determine the eutectic composition ratio of the lauric acid (LA) and stearic acid (SA) binary system, and to measure its thermophysical properties by DSC. The second one is to establish the thermal characteristics of the mixture such as total melting and solidification times, the heat transfer modes in melted and solidified PCM, and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition behaviors. The final one includes the calculations of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, and heat fractions during the melting and solidification processes of the mixture, and also the discussion of the effect of inlet HTF parameters on these characteristics. The LA–SA binary system in the mixture ratio of 75.5:24.5 wt % forms a eutectic, which melts at 37°C and has a latent heat of 182.7 J g−1, and, thus, these properties make it an attractive phase change material used for passive solar space heating applications such as building and greenhouse heating with respect to the climate conditions. The experimental results indicated that the mixture encapsulated in the annulus of two concentric pipes has good thermal and heat transfer characteristics during the melting and solidification processes, and it has potential for heat storage in passive solar space heating systems.  相似文献   

10.
《能源学会志》2020,93(1):76-86
To explore thermal management integration in electric vehicles (EVs), a phase change materials (PCMs) thermal energy storage unit using flat tubes and corrugated fins is designed. The investigation focuses on the thermal characteristics of the PCM unit, such as the temperature variation, heat capacity, and heat transfer time, etc. Meanwhile, the heat storage and release process will be influenced by different inlet temperature, liquid flow rate, melting point of the PCM, and the combination order of the units. Under the same inlet temperature and flow rate condition, the PCM unit with higher melting point enters the latent heat storage stage slowly and enters the phase change melting release stage quickly. Furthermore, the heat storage and release rates increase with increasing liquid flow rates, but the effects are diminishing in the middle and later periods. The multiple PCM units with different melting temperatures are cascaded to help recycle low-grade heat energy with different temperature classes and exhibit well heat storage and release rates.  相似文献   

11.
The effect of an internal air void on the heat transfer phenomenon within encapsulated phase change material (EPCM) is examined. Heat transfer simulations are conducted on a two dimensional cylindrical capsule using sodium nitrate as the high temperature phase change material (PCM). The effects of thermal expansion of the PCM and the buoyancy driven convection within the fluid media are considered in the present thermal analysis. The melting time of three different initial locations of an internal 20% air void within the EPCM capsule are compared. Latent heat is stored within an EPCM capsule, in addition to sensible heat storage. In general, the solid/liquid interface propagates radially inward during the melting process. The shape of the solid liquid interface as well as the rate at which it moves is affected by the location of the internal air void. The case of an initial void located at the center of the EPCM capsule has the highest heat transfer rate and thus fastest melting time. An EPCM capsule with a void located at the top has the longest melting time. Since the inclusion of a void space is necessary to accommodate the thermal expansion of a PCM upon melting, understanding its effect on the heat transfer within an EPCM capsule is necessary.  相似文献   

12.
为探究相变温度对相变材料回填地埋管换热器传热性能的影响,建立管内流体换热、回填区域相变换热及土壤换热的三维耦合传热数值模型,利用焓-多孔介质模型对相变区域相变问题进行处理,研究夏季间歇运行工况下不同相变温度回填材料对埋管换热器传热性能的影响。结果表明:添加PCM,可有效提高换热量,短期内缓解埋管周围热积聚,利用相变温度18℃的PCM回填,单位井深换热量至少比普通材料回填提高49.54%;在间歇运行初期,换热量随相变温度的升高逐渐减小,低相变温度的PCM可明显改善埋管换热量,但随着时间的进行,较高相变温度PCM回填对换热器换热量的改善效果优于前期低相变温度。此外,在运行期间,不同相变温度的PCM表现出不同的熔化、凝固特性,当PCM的熔化、凝固过程交替进行时,可减缓土壤温度在运行期间内波动幅度。  相似文献   

13.
This paper presents a detailed review of effect of phase change material (PCM) encapsulation on the performance of a thermal energy storage system (TESS). The key encapsulation parameters, namely, encapsulation size, shell thickness, shell material and encapsulation geometry have been investigated thoroughly. It was observed that the core-to-coating ratio plays an important role in deciding the thermal and structural stability of the encapsulated PCM. An increased core-to-coating ratio results in a weak encapsulation, whereas, the amount of PCM and hence the heat storage capacity decreases with a decreased core-to-coating ratio. Thermal conductivity of shell material found to have a significant influence on the heat exchange between the PCM and heat transfer fluid (HTF). This paper also reviews the solidification and melting characteristics of the PCM and the effect of various encapsulation parameters on the phase change behavior. It was observed that a higher thermal conductivity of shell material, a lower shell size and high temperature of HTF results in rapid melting of the encapsulated PCM. Conduction and natural convection found to be dominant during solidification and melt processes, respectively. A significant enhancement in heat transfer was observed with microencapsulated phase change slurry (MPCS) due to direct surface contact between the encapsulated PCM and the HTF. It was reported that the pressure drop and viscosity increases substantially with increase in volumetric concentration of the microcapsules.  相似文献   

14.
High-temperature Phase Change Material (PCM) is used as a thermal storage medium of a heat-pipe receiver in an advanced solar dynamic system. With both void cavity and natural convection considered, thermal performance of the heat-pipe receiver is numerically analyzed under gravity. The results indicate that the PCM contained in the integrated heat pipe performs an averaging function of heat loadings. The thermal performance of the heat-pipe receiver is stable and reliable. When a heating cycle is stable, the temperature fluctuations both on heat-pipe wall and in PCM canister remain less than 13 K throughout a sunlight and eclipse cycle. The utility of PCM is essentially improved. The maximum melting ratio of PCM is 92%. Under gravity, PCM melts more quickly with the effect of natural convection. Natural convection accelerates the process of phase changes. Numerical results are compared with the experimental results concerned. The accuracy of numerical model under gravity is verified. The experiment for the PCM canister on the ground can be well prepared with our numerical simulation.  相似文献   

15.
This work aims to evaluate the energy and the exergy performance of an integrated phase change material (PCM) solar collector with latent heat storage in transient conditions. A theoretical model based on the first and the second laws of thermodynamics is developed to predict the thermal behaviour of the system. The effect of natural convection on heat during the melting process is taken into account using an effective thermal conductivity. Influence of PCM thicknesses on the melt fraction, on the energy stored and on the exergy destroyed are studied during charging and discharging processes. Results indicate that the complete melting time is shorter than the solidification time. The latent heat storage system increases the heating requirements at night and reduces the exergy efficiency.  相似文献   

16.
To reduce the mass and improve the thermal performance of the heat receiver, a heat pipe receiver was researched for the space solar dynamic power system. Corresponding mathematical and physical models were built, and a method was devised to provide a numerical equation by which the temperature of the containment canister outer wall, heat pipe wall temperature, working fluid exit temperature and the liquid PCM fraction of the total heat transfer tube were calculated and compared with those obtained from the baseline heat receiver. The results show that it is possible to improve receiver performance, to reduce the fluctuation of the working fluid temperature and to decrease the weight of the heat receiver.  相似文献   

17.
A thermal network model is developed and used to analyze heat transfer in a high temperature latent heat thermal energy storage unit for solar thermal electricity generation. Specifically, the benefits of inserting multiple heat pipes between a heat transfer fluid and a phase change material (PCM) are of interest. Two storage configurations are considered; one with PCM surrounding a tube that conveys the heat transfer fluid, and the second with the PCM contained within a tube over which the heat transfer fluid flows. Both melting and solidification are simulated. It is demonstrated that adding heat pipes enhances thermal performance, which is quantified in terms of dimensionless heat pipe effectiveness.  相似文献   

18.
Here, a simplified analytical model has been proposed to predict solid fraction, solid–liquid interface, solidification time, and temperature distribution during solidification of phase change material (PCM) in a two‐dimensional latent heat thermal energy storage system (LHTES) with horizontal internal plate fins. Host of boundary conditions such as imposed constant heat flux, end‐wall temperature, and convective air environment on the vertical walls are considered for the analysis. Heat balance integral method was used to obtain the solution. Present model yields closed‐form solution for temperature variation and solid fraction as a function of various modeling parameters. Also, solidification time of PCM, which is useful in optimum design of PCM‐based thermal energy storages, has been evaluated during the analysis. The solidification time was found to be reduced by 93% by reducing the aspect ratio from 8 to 0.125 for constant heat flux boundary condition. While, for constant wall temperature boundary condition, the solidification time reduces by 99% by changing the aspect ratio from 5 to 0.05. In case of convective air boundary surrounding, the solidification time is found to reduce by 88% by reducing the aspect ratio from 8 to 0.125. Based on the analytical solution, correlations have been proposed to predict solidification time in terms of aspect ratio and end‐wall boundary condition.  相似文献   

19.
The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat-transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat-transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.  相似文献   

20.
C.Y. Zhao  W. Lu  Y. Tian 《Solar Energy》2010,84(8):1402-1412
In this paper the experimental investigation on the solid/liquid phase change (melting and solidification) processes have been carried out. Paraffin wax RT58 is used as phase change material (PCM), in which metal foams are embedded to enhance the heat transfer. During the melting process, the test samples are electrically heated on the bottom surface with a constant heat flux. The PCM with metal foams has been heated from the solid state to the pure liquid phase. The temperature differences between the heated wall and PCM have been analysed to examine the effects of heat flux and metal foam structure (pore size and relative density). Compared to the results of the pure PCM sample, the effect of metal foam on solid/liquid phase change heat transfer is very significant, particularly at the solid zone of PCMs. When the PCM starts melting, natural convection can improve the heat transfer performance, thereby reducing the temperature difference between the wall and PCM. The addition of metal foam can increase the overall heat transfer rate by 3-10 times (depending on the metal foam structures and materials) during the melting process (two-phase zone) and the pure liquid zone. The tests for investigating the solidification process under different cooling conditions (e.g. natural convection and forced convection) have been carried out. The results show that the use of metal foams can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half. In addition, a two-dimensional numerical analysis has been carried out for heat transfer enhancement in PCMs by using metal foams, and the prediction results agree reasonably well with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号