首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid hot‐carrier cooling is a major loss channel in solar cells. Thermodynamic calculations reveal a 66% solar conversion efficiency for single junction cells (under 1 sun illumination) if these hot carriers are harvested before cooling to the lattice temperature. A reduced hot‐carrier cooling rate for efficient extraction is a key enabler to this disruptive technology. Recently, halide perovskites emerge as promising candidates with favorable hot‐carrier properties: slow hot‐carrier cooling lifetimes several orders of magnitude longer than conventional solar cell absorbers, long‐range hot‐carrier transport (up to ≈600 nm), and highly efficient hot‐carrier extraction (up to ≈83%). This review presents the developmental milestones, distills the complex photophysical findings, and highlights the challenges and opportunities in this emerging field. A developmental toolbox for engineering the slow hot‐carrier cooling properties in halide perovskites and prospects for perovskite hot‐carrier solar cells are also discussed.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Low trap‐state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap‐state density. Time‐dependent photoluminescence study with one‐photon excitation (OPE) and two‐photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm2 V?1 S?1. Furthermore, CsPbBr3 MC‐based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R ) up to 6 × 104 A W?1 with OPE and high R up to 6 A W?1 with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all‐inorganic perovskite‐based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈105 and a gain‐ bandwidth product of 108 Hz for OPE (a gain ≈103 and a gain‐bandwidth product of 106 Hz for TPE).  相似文献   

11.
12.
13.
14.
15.
16.
The mechanisms of carrier transport in the cross‐plane crystal orientation of transition metal dichalcogenides are examined. The study of in‐plane electronic properties of these van der Waals compounds has been the main research focus in recent years. However, the distinctive physical anisotropies, short‐channel physics, and tunability of cross layer interactions can make the study of their electronic properties along the out‐of‐plane crystal orientation valuable. Here, the out‐of‐plane carrier transport mechanisms in niobium diselenide and hafnium disulfide are explored as two broadly different representative materials. Temperature‐dependent current–voltage measurements are preformed to examine the mechanisms involved. First principles simulations and a tunneling model are used to understand these results and quantify the barrier height and hopping distance properties. Using Raman spectroscopy, the thermal response of the chemical bonds is directly explored and the insight into the van der Waals gap properties is acquired. These results indicate that the distinct cross‐plane carrier transport characteristics of the two materials are a result of material thermal properties and thermally mediated transport of carriers through the van der Waals gaps. Exploring the cross‐plane electron transport, the exciting physics involved is unraveled and potential new avenues for the electronic applications of van der Waals layers are inspired.  相似文献   

17.
18.
19.
20.
Notwithstanding the success of lead‐halide perovskites in emerging solar energy conversion technologies, many of the fundamental photophysical phenomena in this material remain debated. Here, the initial steps following photogeneration of free charge carriers in lead‐iodide perovskites are studied, and timescales of charge carrier cooling and polaron formation, as a function of temperature and charge carrier excess energy, are quantified. It is found, using terahertz time‐domain spectroscopy (THz‐TDS), that the observed femtosecond rise in the photoconductivity can be described very well using a simple model of sequential charge carrier cooling and polaron formation. For excitation above the bandgap, the carrier cooling time depends on the charge carrier excess energy and lattice temperature, with cooling rates varying between 1 and 6 meV fs?1, depending on the cation. While carrier cooling depends on the cation, polaron formation occurs within ≈400 fs in CH3NH3PbI3 (MAPbI3), CH(NH2)2PbI3 (FAPbI3), and CsPbI3. Its formation time is independent of temperature between 160 and 295 K. The very similar polaron formation dynamics observed for the three perovskites points to the critical role of the inorganic lattice, rather than the cations, for polaron formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号