首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
 博士学位论文摘要 岩石材料动态力学特性是评价岩石结构在爆炸以及地震载荷作用下稳定性的重要参数, 是国防和民用防护工程研究的基本资料, 具有重要的学术价值和应用价值。对花岗岩材料在动态压应力(单轴和三轴) 作用下的力学特性进行了较系统的实验和理论研究。首先通过实验研究了花岗岩材料的动态断裂特性以及在单轴和三轴动态压应力作用下的强度以及变形特性。结果表明, 花岗岩的动态断裂韧度随加载速率的增加以及加载时间的减小而增加。在单轴情况下, 花岗岩的抗压强度随应变速率的增加而增加, 杨氏模量以及泊松比随应变速率的变化很小。在三轴情况下, 花岗岩的抗压强度也随应变速率的增加而增加, 强度的增加幅度随围压的增加有减小的趋势, 杨氏模量以及泊松比随应变速率的变化不大; 花岗岩的杭压强度随围压的增加明显增加, 在不同的应变速率下具有相同的趋势, 花岗岩的杨氏模量以及泊松比随围压的增加有小幅度的增加趋势。在实验研究的基础上, 应用滑移型裂纹模型对花岗岩材料在压缩应力作用下的力学特性进行了理论研究。在单轴情况下, 采用一组与轴向应力平行的滑移型裂纹系列模拟岩石材料的劈裂破坏模式同时考虑裂纹间的相互作用。根据裂纹的动态扩展准则以及能量平衡理论, 得到了不同应变速率下花岗岩的理论强度值以及应力应变关系, 这些理论结果与实验结果符合得非常好。本部分的研究还表明, 在动载荷作用下, 裂纹的扩展速率以及岩石材料的动态断裂韧度的率相关特性导致岩石材料的单轴抗压强度随应变速率的增加而增加。当应变速率为10- 4~ 100S- 1范围时, 裂纹的扩展速率对岩石材料的破坏影响可以忽略, 岩石材料的抗压强度随应变速率的增加仅仅由于岩石材料的动态断裂韧度的率相关特性造成。在三轴情况下, 用一组与轴向应力成一定夹角的滑移裂纹系列模拟岩石材料的剪切破坏模式, 并根据虚拟力方法得到了该裂纹系列的应力强度因子表达式。根据动态裂纹扩展准则以及能量平衡理论, 也得到了不同围压以及不同应变速率下花岗岩的理论强度值以及应力应变关系。结果表明, 花岗岩的抗压强度以及应力应变关系随应变速率的变化规律与实验结果符合得比较好。模型结果还表明, 由模型得到的强度以及应力应变曲线随围压的变化规律在较低围压时(小于110M Pa) 与实验结果符合得比较好。本项研究在实验研究的基础上, 创新性地从研究岩石内部固有的微裂纹在动载荷作用下的扩展聚合特性入手, 结合细观力学以及动态断裂力学的相关理论, 揭示了花岗岩的率相关特性机理, 初步建立了岩石材料宏观动态力学特性与岩石内部固有的裂纹动态扩展特性的关系以及岩石材料强度与应变速率的关系和率相关的岩石材料本构模型, 构筑了系统研究岩石材料率相关特性的基本框架。  相似文献   

2.
韧性岩石常规三轴压缩试验及变形与损伤演化规律研究   总被引:1,自引:1,他引:0  
 利用岩石全自动三轴伺服仪,对向家坝水电站坝基挤压带强风化砂岩进行不同围压下的常规三轴压缩试验,并对岩石变形和破坏机制进行研究。试验结果表明:该强风化砂岩表现出显著的非线性变形和延性破坏特征,属于韧性岩石。在偏压作用下,岩石轴向和侧向应变分别为5%和4%,体积膨胀量为4%以上。岩石变形力学参数随荷载的变化而变化,随偏应力的增大,岩石弹性模量减小,泊松比增大。围压可提高岩石抵抗变形和破坏的能力,围压越大,岩石发生扩容的起始偏应力越大。基于密度方法研究岩石损伤演化规律。加载初期,岩石被压密,处于无损阶段;当偏应力超过一定水平时,岩石出现损伤,且损伤量与等效应变呈线性关系,密度损伤阈值低于0.12。试验结果对向家坝水电站坝基稳定性分析有重要参考价值。  相似文献   

3.
低渗透岩石三轴压缩过程中的渗透性研究   总被引:5,自引:2,他引:3  
 采用岩石全自动三轴伺服仪,对低渗透花岗岩进行考虑渗透水压作用的三轴渗流–应力耦合试验。基于试验结果,研究花岗岩在不同围压和渗压下的渗透特性,分析岩石应力、应变变化过程中渗透率随围压、渗压和体积应变的变化规律。试验结果表明:岩石的应力–应变关系具有典型的脆性特征,渗压相同围压不同时,岩石强度随围压增大而增加;围压相同渗压不同时,较低的渗压对低渗透岩石强度影响不明显。岩样体积应变经过压密和扩展2个阶段,最大体积压缩应变随着围压的增加而增加,而岩样渗透率最小值并未出现在最大压密处,而是出现在体积应变拐点前,约在最大压密体积应变的95%处,并给出渗透率与体积应变的关系式。  相似文献   

4.
大理岩阻尼参数与动弹性参数的动三轴试验研究   总被引:1,自引:0,他引:1  
 首次利用MTS815 Flex Test GT岩石力学试验系统,在不同围压下对大理岩进行阻尼参数及动弹性参数的动三轴测试研究。波形为正弦波,频率3 Hz,振动循环30次,动应力上限与下限分别为相应围压下试样抗压强度的0.6倍和5.09 MPa。试验结果表明,大理岩阻尼比、阻尼系数随循环周次的增加而减小,随围压的增大而增大;动弹性模量随循环周次的增加而增大,随围压的增大而减小;各围压下动弹性模量均大于静弹性模量,动泊松比均小于静泊松比,且围压越大,二者差值越大;大理岩在30循环周次以内动荷载作用下,其力学性质会逐渐强化。  相似文献   

5.
砂岩力学特性及其改进Duncan-Chang模型   总被引:1,自引:0,他引:1  
 为了研究砂岩的力学特性,对砂岩试件开展了不同围压下的常规三轴压缩试验。试验结果显示,随围压增加,砂岩峰值应力、峰值点应变及残余强度均逐渐增大;当围压低于15 MPa时,砂岩弹性模量随围压增加也逐渐增大,但增大幅度逐渐降低;当围压在15 MPa以上时,其弹性模量则与围压无关。为了描述砂岩破坏过程的应力–应变响应,提出一种改进的Duncan-Chang模型,并根据岩石应力–应变曲线峰值点处斜率为0的特点给出模型参数的确定方法。利用砂岩三轴压缩试验结果对模型合理性进行验证。预测曲线和试验结果对比显示,该模型能够准确描述砂岩应变软化特性和不同围压下砂岩破坏过程中除初始压密阶段以外的其余4个阶段,特别是能够反映砂岩破坏后的残余强度。对模型特性的进一步分析表明,除应变软化特性外,该模型还可模拟岩石在高围压下的应变硬化行为,具有较强的适应性。  相似文献   

6.
基于花岗岩卸荷试验的损伤变形特征及其强度准则   总被引:5,自引:4,他引:1  
 对取自大渡河大岗山水电站的花岗岩开展高应力下2种卸荷方案的力学特性试验,并与同围压下的常规三轴压缩试验结果进行对比分析,研究岩石卸荷过程中的破坏机制、力学强度参数损伤劣化效应及其卸荷破坏的强度特性。研究结果表明:(1) 岩石卸荷过程中向卸荷方向回弹变形强烈、扩容显著,脆性破坏特征明显。(2) 卸荷试验中,开始卸荷点处的变形模量较常规三轴压缩试验已发生一定的损伤劣化,其损伤因子与初始围压近似成线性关系,而该点处的泊松比所表现出的损伤劣化效应却不明显。(3) 卸荷过程中,泊松比随着围压的不断卸除,呈现指数关系增长;变形模量变化平缓,但在岩样卸荷屈服破坏点处陡降。(4) 在高应力卸荷条件下,Mogi-Coulomb强度准则能很好地反映其破坏强度特性。(5) 相比较于常规三轴压缩试验,卸荷时的抗剪强度参数c值减小而j 值增大,其变化量与卸荷方式有关。这些结论揭示高应力条件下花岗岩的卸荷力学特性,为西部水利水电工程的开挖、支护设计及其稳定性分析提供了理论参考。  相似文献   

7.
详细总结岩石应力门槛值(起裂强度ci?、损伤强度cd?和峰值强度f?)的物理意义和计算方法,以花岗岩和大理岩为研究对象进行不同围压的常规三轴试验,计算分析ci?,cd?和f?值,以及各个门槛值对应的轴向应变、侧向应变和体积应变的变化规律,重点讨论轴向应变和侧向应变的特点和产生机制,分析结果发现:花岗岩的cc?/f?,ci?/f?,cd?/f?分别位于0.10~0.19,0.40~0.59,0.77~0.82区间内,大理岩相应的应力比位于0.10~0.25,0.47~0.64,0.82~0.92内,不同岩石或相同岩石门槛值应力比的差异可能由于矿物成分、赋存环境、开挖损伤造成;2种岩石应力门槛值及各自对应的轴向应变随围压近似呈线性递增,并且应力和轴向应变随围压的变化曲线非常相似;侧向应变在达到cd?之前增长缓慢,在达到cd?之后急剧增加,而轴向应变在整个加载过程稳步增加;围压、cd?和对应的损伤体积应变存在内在关联性,相互关系可用线性或二项式拟合。  相似文献   

8.
受制于采掘活动的频繁应力扰动,地下工程围岩的稳定性问题日渐突出,严重制约了地下矿产资源的安全高效开采。为了探究不同埋深下岩体在应力扰动过程中的损伤破裂机制,以常规三轴试验为基础,开展4组围压下的分级应力扰动室内试验,基于力学分析、声发射分阶段定位及损伤评价指标演化特征,确定分级应力扰动下岩石力学的损伤劣化规律及细观裂纹发育特征,建立岩石损伤状态—微观裂纹发育特征—损伤评价指标变化三者之间的关联。结果表明:(1)分级应力扰动下,岩石峰值强度和峰值轴向应变随围压升高逐渐增大。应力扰动各阶段轴向应变增量均呈现初期小幅波动,中期缓慢增加,后期快速增加的趋势;平均弹性模量呈现初期小幅波动后快速降低的趋势。(2)围压通过限制裂纹扩展降低岩石损伤累积速率,高围压下岩石能承受更多级应力扰动,且恒压阶段蠕变特征更明显。(3)加载前期,岩石内部裂纹发育仅在既有损伤区域的重复压密破坏和临近区域少量微裂纹的发育,扰动后期随着轴力的升高会使得围压限制作用减弱造成裂纹快速扩展。(4)岩石内部在加载不同阶段微裂纹发育的数量、尺度的变化能有效的体现在声发射b值和ΔF值,与岩石损伤程度耦合度较高,可用来定量评估岩石损伤...  相似文献   

9.
为了分析煤矿开采过程中煤体损伤的能量演化规律和渗透特性,采用控制围压、加卸载轴压的方式开展三轴循环加卸载渗流试验,分析在不同围压下弹性参数(弹性模量、泊松比)、能量密度随着轴向应变的演化特征,并引入弹塑性材料的损伤变量,进而探讨损伤变量和渗透率的关系。结果表明:在加卸载过程中,进入屈服阶段后,弹性模量开始降低,耗散能密度、耗散能比例以及损伤变量逐渐增大,进入峰后阶段后演化加剧,说明岩石破坏是一个能量耗散的损伤演化过程;以应力屈服点为分界点,屈服前渗透率和损伤变量呈现幂函数关系;屈服后二者具有较好的指数函数关系,并拟合出不同围压下二者的关系公式;渗透率随围压的增加而减小,说明围压对渗透有抑制作用。  相似文献   

10.
利用改进的霍普金森压杆对不同围压、不同应变率下的岩样进行了试验研究,分析了其在中高应变率下的冲击响应特征与破坏模式。基于试验结果发现在围压一定情况下,岩石的动态抗压强度和峰值应变随应变率的增大而增大,其中抗压强度随应变率呈对数增长;弹性模量对围压和应变率不敏感,且应变率越大岩石破碎现象越严重。其次,在应变率相近情况下,花岗岩的动态抗压强度随围压呈增大趋势,其破坏模式由低围压下的轴向劈裂转向高围压下的压剪破坏;高围压下花岗岩应力–应变曲线出现屈服平台,具有明显的脆—延性转化特征。最后,检验了莫尔–库仑准则和霍克–布朗准则的适用性,指出此花岗岩更符合莫尔–库仑准则,其动态强度增大主要由黏聚力的应变率效应引起。  相似文献   

11.
应变加载速率对盐岩力学性能的影响   总被引:7,自引:5,他引:2  
 对盐岩进行不同围压下变应变加载速率的三轴压缩强度与变形特性的室内测试,分析应变加载速率对盐岩三轴强度、轴向应变及侧向应变以及破裂形式等物理力学性质的影响。在所测试的应变加载速率范围内,加载速率对盐岩三轴强度的影响可分为3个阶段:无明显影响的弹性阶段、强度差异形成的塑性阶段初期、强度差异保持的应变硬化阶段,最终的结果是抗压强度随着加载速率的提高而增大。对试验后岩样的破坏形式进行细观分析可知,高应变加载速率对盐岩内部结构造成的破坏更明显,裂纹长度大且外观明显,与低应变率下的裂纹破裂形式有显著的差异。对三轴试验后的岩样进行单轴压缩测试,发现三轴试验时的应变率较大,试验后岩样的弹性模量越小,表明高应变率导致盐岩的结构破坏更严重,对盐岩的内部损伤越大。对比不同围压下的试验数据并结合其他单轴试验下的研究结果,得出围压是加载速率对盐岩性质有无影响的先决条件,并且围压越高加载速率对盐岩力学性质的影响越明显的结论。以本次试验研究所得成果出发,结合实际工程中盐岩溶腔的各种用途以及建造、运营的各个阶段内不同的盐岩应变率进行分析,提出对工程有益的建议。  相似文献   

12.
围压与温度共同作用下盐岩的SHPB实验及数值分析   总被引:2,自引:1,他引:1  
 在自主研制的可进行围压和温度共同加载的分离式Hopkinson压杆(SHPB)实验装置TSCPT-SHPB基础上,对盐岩在5~25 MPa围压作用下的轴向动力性能以及盐岩在40 ℃~80 ℃,0.0~0.5 MPa围压下进行实验研究,分析围压和应变率对盐岩在围压作用下轴向抗压强度动力增长系数(DIF)的影响,以及温度和围压对盐岩动态力学性能的影响。结果表明:在动态作用下,围压对盐岩延性的提高有显著影响;盐岩属率敏感性和温度敏感性材料,其峰值强度随应变率的提高而提高,在低围压下的提高幅度比高围压下显著,并得到实验范围内盐岩材料动力增长系数(DIF)与围压和应变率关系的表达式;在高应变率(400 s-1)条件下,盐岩的动态峰值强度随温度的升高而降低,并依据实验数据,拟合得到峰值强度在各实验温度下随围压变化的计算公式。为考虑应变软化效应,对ABAQUS有限元软件中的Drucker-Prager模型进行改进,并基于单向动态围压下的实验数据拟合的计算参数,对盐岩TSCP-SHPB实验进行数值模拟,模拟结果与实验结果吻合较好。  相似文献   

13.
 岩石等脆性材料的力学性能与其所受围压的大小密切相关。为了研究地下工程岩石在围压下的冲击压缩特性,采用具主动围压加载的分离式Hopkinson压杆,对岩石进行主动围压下的SHPB冲击压缩试验,得到岩石在不同围压和不同应变率下的轴向应力–应变曲线,并对试验过程中试件的应力均匀性进行分析。研究表明:岩石类脆性材料在围压作用下其抗压强度和韧性大大提高,并且具有向延性特征发展的趋势,显现出较强的围压效应;在同等级围压下,岩石的峰值强度和峰值应变随应变率的变化表现出显著的应变率相关性,动态强度增长因子与应变率的对数呈近似线性关系,动态强度随应变率的增加而近似线性增长。单轴动荷载下,岩石在以拉应力为主,其他应力联合作用下发生破坏,表现出明显的脆性特征;随着围压的增加,岩石试件将发生脆性向延性的转变,破坏形态以压剪破坏为主,同时发生拉应变破坏和卸载破坏。  相似文献   

14.
 首先采用声波纵、横波测量方法,进行岩样筛选。然后根据高压油气藏地质构造特征,设计模拟高压油气藏内部孔隙压力变化条件下岩石力学特性测试的方案。在GCTS–1000型三轴压缩试验机上进行高温高压三轴岩石力学测试,结果表明:随着砂岩内部孔隙压力增加,外部围压保持不变的条件下,岩石的强度与围压不呈单调上升的变化趋势,而是随着孔隙压力的增加,净围压减小,岩石强度先随净围压减小而逐渐减小,之后则表现出反常的增大现象。在地压梯度为2.20 MPa/(100 m)时,产生最低强度值。随着地压梯度的增大,岩石强度值反而升高,形成一个V形曲线。砂岩的弹性模量为一波浪形曲线,上下波动范围最大差值为2 909 MPa。泊松比的值从低向高;在地压梯度大于2.00 MPa/(100 m)时,泊松比接近0.5。重复试验揭示了岩石三轴强度特性的这一特殊现象。该结果对于高压油气藏、水泥环和套管系统的真三维套管变形与损坏的模拟有着重要的参考价值,而且是必不可少的基础数据。  相似文献   

15.
围压对砂岩动态冲击力学性能的影响   总被引:10,自引:3,他引:7  
 利用带围压装置的霍普金森压杆设备对砂岩在不同围压等级、不同应变率下的动态力学性能进行试验研究,分析砂岩单轴动态抗压强度和比能量吸收值的应变率效应,围压状态下砂岩在冲击荷载循环作用下的力学特性以及累积比能量吸收值与入射能量、围压等参量之间的关系。研究结果表明,砂岩的动态杨氏模量与静态杨氏模量相比明显增加,两者比值达3.21~3.81;而当应变率为50~100 s-1时,动态杨氏模量随应变率有所增加,但变化不大。砂岩单轴动态压缩试验的比能量吸收值与应变率 呈线性关系,而单轴动态抗压强度增长因子 (即动态抗压强度)与 成线性关系。在围压状态下,砂岩具有明显的脆性–延性转化特征,其应力–应变曲线出现明显的屈服平台,呈近似的弹塑性特征。围压的加载作用对阻止试件产生剪切失稳的作用相当明显。随着冲击荷载循环作用次数的增加,试件的杨氏模量变小,屈服应力降低,屈服应变增加。砂岩的破坏形态随围压大小不同而发生变化,砂岩从轴向拉伸破坏形态向压剪破坏形态转变的临界围压值为10 MPa。在能量相同的入射波作用下,砂岩试件在低围压时比在高围压时的比能量吸收值大,且砂岩的比能量吸收值、入射波能量和围压三者具有良好的规律性,并得到比能量吸收值随入射波能量和围压变化的关系式。  相似文献   

16.
两种含瓦斯煤样变形特性与抗压强度的实验分析   总被引:17,自引:12,他引:5  
 介绍型煤煤样和原煤煤样的制作过程,设计含瓦斯煤样的三轴实验方法和步骤。利用自行研制的三轴蠕变瓦斯渗流装置和材料实验机组成含瓦斯煤样三轴压缩实验装置,对型煤煤样和原煤煤样进行含瓦斯三轴实验,获得大量不同围压和不同瓦斯压力条件下的实验数据;根据实验结果系统地研究含瓦斯煤样两种煤样在三轴应力条件下的变形特性和抗压强度。研究结果表明,围压和瓦斯压力对含瓦斯煤样的变形特性和抗压强度都有一定程度的影响;型煤煤样和原煤煤样的变形特性和抗压强度具有规律上的共性,但是其力学参数存在显著差异;弹性模量和泊松比在含瓦斯煤样的变形过程中不是定值,而是动态变化的,且2种煤样的弹性模量差别很大,泊松比也不相等;相同载荷条件下型煤煤样的变形比原煤煤样的要大得多,其形状改变也比原煤煤样的大。研究结果对进一步认识含瓦斯煤样的力学性质具有一定的意义。  相似文献   

17.
循环荷载作用下盐岩三轴变形和强度特性试验研究   总被引:1,自引:1,他引:0  
 为研究三向应力状态下循环荷载作用对盐岩变形、强度及损伤特性的影响,利用TAW–2000 型微机伺服岩石三轴试验机进行不同荷载波形参数(上、下限应力、应力幅值和频率)和不同围压下的盐岩试样的循环加、卸载试验。试验得到盐岩轴向初始变形和稳态变形两阶段演化规律;通过提高循环荷载上限应力、降低下限应力、增大应力幅值或者降低载荷频率、减小围压等途径,均会加速盐岩试样不可逆变形的发展,提高盐岩循环稳态应变速率,减小稳态阶段在整个变形阶段的比例,从而加速试样变形破坏;荷载波形参数中上限应力和应力幅值对循环荷载作用下盐岩变形演化速率、试样损伤发展的影响最大。循环荷载作用下,盐岩弹性模量随循环次数或加载时间呈指数递减趋势,并在50~100个循环后其值接近常数;循环加载后二次压缩盐岩强化与否,取决于循环加载时所施加荷载水平是否造成盐岩内部损伤的累积,通过试验可间接推断盐岩三轴循环变形破坏的上限应力阈值为80%~89%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号