首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li X  Meng G  Xu Q  Kong M  Zhu X  Chu Z  Li AP 《Nano letters》2011,11(4):1704-1709
We report on the controlled growth of germanium (Ge) nanostructures in the form of both nanowire (NW) and nanotube (NT) with ultrahigh aspect ratios and variable diameters. The nanostructures are grown inside a porous anodic aluminum oxide (AAO) template by low-temperature chemical vapor deposition (CVD) assisted by an electrodeposited metal nanorod catalyst. Depending on the choice of catalytic metals (Au, Ni, Cu, Co) and germane (GeH(4)) concentration during CVD, either Ge NWs or NTs can be synthesized at low growth temperatures (310-370 °C). Furthermore, Ge NWs and NTs with two or more branches can be grown from the same stem while using AAO with branched channels as templates. Transmission electron microscopy studies show that NWs are single crystalline and that branches grow epitaxially from the stem of NWs with a crystalline direction independent of diameter. As-grown NTs are amorphous but can crystallize via postannealing at 400 °C in Ar/H(2) atmosphere, with a wall thickness controllable between 6 and 18 nm in the CVD process. The yield and quality of the NTs are critically dependent on the choice of the catalyst, where Ni appears the best choice for Ge NT growth among Ni, Cu, Co, and Au. The synthesis of structurally uniform and morphologically versatile Ge nanostructures may open up new opportunities for integrated Ge-nanostructure-based nanocircuits, nanodevices, and nanosystems.  相似文献   

2.
Wang C  Murphy PF  Yao N  McIlwrath K  Chou SY 《Nano letters》2011,11(12):5247-5251
We report a new approach, termed "growth by nanopatterned host-medicated catalyst" (NHC growth), to solve nonuniformities of Si nanowires (NWs) grown on amorphous substrates. Rather than pure metal catalyst, the NHC uses a mixture of metal catalyst with the material to be grown (i.e., Si), nanopatterns them into desired locations and anneals them. The Si host ensures one catalyst-dot per-growth-site, prevents catalyst-dot break-up, and crystallizes catalyst-dot (hence orientating NWs). The growth results straight silicon NWs on SiO2 with uniform length and diameter (4% deviation), predetermined locations, preferred orientation, one-wire per-growth-site, and high density; all are 10-100 times better than conventional growth.  相似文献   

3.
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.  相似文献   

4.
InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of nonepitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2700 cm2/Vs and ION/IOFF >103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, “printable” transistors, capable of delivering 5 10 mA ON currents (~400 nanowires).  相似文献   

5.
The initial stages of HgCdTe growth on Al2O3, GaAs, CdTe, and KCl substrates have been studied by electron diffraction. HgCdTe films were produced by pulsed laser deposition and isothermal vapor phase epitaxy. InGaAs films were grown by isothermal chloride epitaxy on GaAs substrates. In the initial stages of the growth process, we observed a transition from an amorphous to a textured polycrystalline phase and then to a mosaic single-crystal structure. We have calculated the critical size of crystalline grains below which amorphization occurs in II-VI and III-V compounds. The critical grain size agrees with the grain size of the disordered (amorphous) phase that forms in the initial stage of epitaxy. We have determined some characteristics of the heterostructures: critical film thickness below which pseudomorphic growth is possible without misfit dislocation generation, elastic stress in the epitaxial system, surface density of dangling bonds at dislocations, and the critical island radius above which no interfacial misfit dislocations are generated.  相似文献   

6.
We report the growth of GaAsSb nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. The structural characteristics of the GaAsSb NWs have been investigated in detail. Their Sb mole fraction was found to be about?25%. Their crystal structure was found to be pure zinc blende (ZB), in contrast to the wurtzite structure observed in GaAs NWs grown under similar conditions. The ZB GaAsSb NWs exhibit rotational twins around their [111]B growth axis, with twin-free segments as long as 500?nm. The total volumes of GaAsSb segments with twinned and un-twinned orientations, respectively, were found to be equal by x-ray diffraction analysis of NW ensembles.  相似文献   

7.
Dong Y  Yu G  McAlpine MC  Lu W  Lieber CM 《Nano letters》2008,8(2):386-391
Radial core/shell nanowires (NWs) represent an important class of nanoscale building blocks with substantial potential for exploring fundamental electronic properties and realizing novel device applications at the nanoscale. Here, we report the synthesis of crystalline silicon/amorphous silicon (Si/a-Si) core/shell NWs and studies of crossed Si/a-Si NW metal NW (Si/a-Si x M) devices and arrays. Room-temperature electrical measurements on single Si/a-Si x Ag NW devices exhibit bistable switching between high (off) and low (on) resistance states with well-defined switching threshold voltages, on/off ratios greater than 10(4), and current rectification in the on state. Temperature-dependent switching experiments suggest that rectification can be attributed to barriers to electric field-driven metal diffusion. Systematic studies of Si/a-Si x Ag NW devices show that (i) the bit size can be at least as small as 20 nm x 20 nm, (ii) the writing time is <100 ns, (iii) the retention time is >2 weeks, and (iv) devices can be switched >10(4) times without degradation in performance. In addition, studies of dense one-dimensional and two-dimensional Si/a-Si x Ag NW devices arrays fabricated on crystalline and plastic substrates show that elements within the arrays can be independently switched and read, and moreover that bends with radii of curvature as small as 0.3 cm cause little change in device characteristics. The Si/a-Si x Ag NW devices represent a highly scalable and promising nanodevice element for assembly and fabrication of dense nonvolatile memory and programmable nanoprocessors.  相似文献   

8.
We study the mechanism of lattice parameter accommodation and the structure of GaAs nanowires (NWs) grown on Si(111) substrates using the Ga-assisted growth mode in molecular beam epitaxy. These nanowires grow preferentially in the zincblende structure, but contain inclusions of wurtzite at the base. By means of grazing incidence x-ray diffraction and high-resolution transmission electron microscopy of the NW-substrate interface, we show that the lattice mismatch between the NW and the substrate is released immediately after the beginning of NW growth through the inclusion of misfit dislocations, and no pseudomorphic growth is obtained for NW diameters down to 10 nm. NWs with a diameter above 100 nm exhibit a rough interface towards the substrate, preventing complete plastic relaxation. Consequently, these NWs exhibit a residual compressive strain at their bottom. In contrast, NWs with a diameter of 50 nm and below are completely relaxed because the interface is smooth.  相似文献   

9.
We report on highly Mn-doped GaAs nanowires (NWs) of high crystalline quality fabricated by ion beam implantation, a technique that allows doping concentrations beyond the equilibrium solubility limit. We studied two approaches for the preparation of Mn-doped GaAs NWs: First, ion implantation at room temperature with subsequent annealing resulted in polycrystalline NWs and phase segregation of MnAs and GaAs. The second approach was ion implantation at elevated temperatures. In this case, the single-crystallinity of the GaAs NWs was maintained, and crystalline, highly Mn-doped GaAs NWs were obtained. The electrical resistance of such NWs dropped with increasing temperature (activation energy about 70 meV). Corresponding magnetoresistance measurements showed a decrease at low temperatures, indicating paramagnetism. Our findings suggest possibilities for future applications where dense arrays of GaMnAs nanowires may be used as a new kind of magnetic material system.  相似文献   

10.
This work presents a rapid and simple synthesis procedure for ZnO nanowires (NWs) array by using the vapor–solid (VS) method. Experimental results indicate that the length and diameter of the grown ZnO NWs are associated with the temperature effect, while the growth density of NWs is strongly related to gas flux during the VS process. Additionally, the synthesized ZnO NWs possess specific crystalline qualities, making them highly promising for piezoelectric device applications. Therefore a piezoelectric type nanogenerator based on the ZnO NWs is also designed in this work, with a high output of piezoelectric current of 0.6 μA cm−2 obtained as well. Our results further demonstrate the feasibility of applying piezoelectric energy via the rapidly grown ZnO NWs array.  相似文献   

11.
Carbon is a commonly used p-type dopant in planar III-V semiconductors, however its use in nanowire (NW) growth has been much less reported. In this work we show that the morphology of gold assisted GaAs NWs can be strongly modified by the presence of CBr(4) vapor during growth by metalorganic vapor phase epitaxy. GaAs NWs were grown under conditions which result in strong tapering and lateral growth at low growth temperatures by the use of triethylgallium (TEGa) instead of the more usual precursor, trimethylgallium (TMGa). Under these conditions, NWs grown in the presence of CBr(4) exhibit higher axial and lower radial growth rates, and negligible tapering compared with NWs grown in the absence of CBr(4) under the same conditions. We attribute this primarily to the suppression of the 2d growth rate by CBr(4), which enhances the axial growth rate of the nanowires. NWs grown with CBr(4) show stacking-fault-free zincblende structure, while the NWs grown without CBr(4) show a high density of stacking faults. This work underlines the striking effects which precursor chemistry can have on nanowire morphology.  相似文献   

12.
A new process has been developed to grow silicon (Si) nanowires (NWs), and their growth mechanisms were explored and discussed. In this process, SiNWs were synthesized by simply oxidizing and then reducing Si wafers in a high temperature furnace. The process involves H2, in an inert atmosphere, reacts with thermally grown SiO2 on Si at 1100 °C enhancing the growth of SiNWs directly on Si wafers. High-resolution transmission electron microscopy studies show that the NWs consists of a crystalline core of ~25 nm in diameter and an amorphous oxide shell of ~2 nm in thickness, which was also supported by selected area electron diffraction patterns. The NWs synthesized exhibit a high aspect ratio of ~167 and room temperature phonon confinement effect. This simple and economical process to synthesize crystalline SiNWs opens up a new way for large scale applications.  相似文献   

13.
Yan X  Zhang X  Ren X  Huang H  Guo J  Guo X  Liu M  Wang Q  Cai S  Huang Y 《Nano letters》2011,11(9):3941-3945
InAs quantum dots (QDs) are grown epitaxially on Au-catalyst-grown GaAs nanowires (NWs) by metal organic chemical vapor deposition (MOCVD). These QDs are about 10-30 nm in diameter and several nanometers high, formed on the {112} side facets of the GaAs NWs. The QDs are very dense at the base of the NW and gradually sparser toward the top until disappearing at a distance of about 2 μm from the base. It can be concluded that these QDs are formed by adatom diffusion from the substrate as well as the sidewalls of the NWs. The critical diameter of the GaAs NW that is enough to form InAs QDs is between 120 and 160 nm according to incomplete statistics. We also find that these QDs exhibit zinc blende (ZB) structure that is consistent with that of the GaAs NW and their edges are faceted along particular surfaces. This hybrid structure may pave the way for the development of future nanowire-based optoelectronic devices.  相似文献   

14.
Vertically aligned ZnO nanowires (NWs) were grown on Au-nanocluster-seeded amorphous SiO(2) films by the advective transport and deposition of Zn vapours obtained from the carbothermal reaction of graphite and ZnO powders. Both the NW volume and visible-to-UV photoluminescence ratio were found to be strong functions of, and hence could be tailored by, the (ZnO+C) source-SiO(2) substrate distance. We observe C flakes on the ZnO NWs/SiO(2) substrates which exhibit short NWs that developed on both sides. The SiO(2) and C substrates/NW interfaces were studied in detail to determine growth mechanisms. NWs on Au-seeded SiO(2) were promoted by a rough ZnO seed layer whose formation was catalysed by the Au clusters. In contrast, NWs grew without any seed on C. A correlation comprising three orders of magnitude between the visible-to-UV photoluminescence intensity ratio and the NW volume is found, which results from a characteristic Zn partial pressure profile that fixes both O deficiency defect concentration and growth rate.  相似文献   

15.
Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250?°C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10?? Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm?2 was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.  相似文献   

16.
We have developed a kinetic theory of the growth of self-induced GaN nanowires (NWs) in the vertical and lateral directions on substrates with amorphous sublayers. A model is constructed that can describe temporal evolution of the NW length and radius. The results of model calculations are compared to experimental data on temporal dependences of the length and radius of GaN nanowires grown on amorphous Si x N y sublayers on Si substrates. The comparison shows good agreement between the proposed theory and experiment. Conditions, for which the NW length and radius are described by power functions of the time and the NW length exhibits scaling superlinear dependence on the radius, are determined.  相似文献   

17.
The structural, magnetic and transport properties of Co/GaAs (1 0 0) and Co/glass thin films have been investigated. The structural measurements reveal the crystalline nature of Co thin film grown on GaAs, while microcrystalline nature in case of glass substrate. The film grown on GaAs shows higher coercivity (49.0 G), lower saturation magnetization (3.65 × 10−4) and resistivity (8 μΩ cm) values as compared to that on glass substrate (22 G, 4.77 × 10−4 and 18 μΩ cm). The grazing incidence X-ray reflectivity and photoemission spectroscopy results show the interaction between Co and GaAs at the interface, while the Co layer grown on glass remains unaffected. These observed results are discussed and interpreted in terms of different growth morphologies and structures of as grown Co thin film on both substrates.  相似文献   

18.
Feng Y  Zheng X 《Nano letters》2010,10(11):4762-4766
We report the first experimental study of catalytic CO oxidation over copper oxide (CuO) nanowires (NWs) grown directly on copper meshes. The catalytic activity of CuO NWs is significantly improved by a brief argon or hydrogen radio frequency plasma treatment. The plasma enhancement effect comes from the generation of grain boundaries and the reduction of Cu(II) to the more active oxidation state Cu(I) according to our TEM, XPS, and kinetic study.  相似文献   

19.
We have studied the formation of nanowhiskers (NWs) by molecular beam epitaxy (MBE) on GaAs(100) substrates. The MBE growth of NWs exhibits two stages (initial and developed) and leads to the formation of NWs with surface morphology of two types (nucleation and intergrowth). The stage of developed growth is characterized by the predominant formation of intergrown NWs oriented in the 〈111〉B direction, having (110) habit (including the NW tip surface) and hexagonal cross sections with a transverse size within 50–300 nm. It was found that the transverse size of a hexagonal NW may significantly differ from that of an Au-GaAs melt droplet. The ratio of longitudinal and transverse dimensions of intergrown NWs can be on the order of 150 and above. When the transverse size of NWs exceeds a certain value (about 200 nm), the crystal length exhibits a slight decrease. The existence of two types of morphology is indicative of inhomogeneous character of the NW growth on a GaAs(100) surface, which depends on the catalyst droplet size, effective thickness of the deposited GaAs layer, and the growth temperature.  相似文献   

20.
The effect of sulfur passivation on core-shell p-n junction GaAs nanowire (NW) solar cells has been investigated. Devices of two types were investigated, consisting of indium tin oxide contact dots or opaque Au finger electrodes. Lateral carrier transport from the NWs to the contact fingers was achieved via a p-doped GaAs surface conduction layer. NWs between the opaque contact fingers had sidewall surfaces exposed for passivation by sulfur. The relative cell efficiency increased by 19% upon passivation. The contribution of the thin film grown between the NWs to the total cell efficiency was estimated by removing the NWs using a sonication procedure. Mechanisms of carrier transport and photovoltaic effects are discussed on the basis of spatially resolved laser scanning measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号