首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   

2.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

3.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

4.
The vertical sections of Fe–12%Cr–B–xAl–C system with different aluminum contents have been calculated by use of Thermo‐Calc software and the influence of aluminum content on the phase regions and the parameters of eutectic point have been analyzed. Fe–12.0%Cr–1.0%B–2.0%Al–0.3%C and Fe–12.0%Cr–1.0%B–4.0%Al–0.3%C alloy were chosen to be studied by experiment. The phase transition temperatures were measured by differential scanning calorimetry and the microstructure and the phase type was detected by scanning electrone microscope‐energy dispersive X‐ray spectroscopy and X‐ray diffraction. The results indicate that calculated phase diagrams agree well with the experimental results and further prove the thermodynamics database of Thermo‐Calc software is reliable and it can be used to help design the alloy composition and heat treatment process.  相似文献   

5.
This paper presents the investigation on fatigue crack growth behaviour of Al–Zn and Al–Zn–Ce alloys. Fatigue tests were carried out on as‐cast and heat‐treated CT specimens according to ASTM E647 testing standard. The test results showed that the addition of rare earth element (cerium) and heat treatments (T6 and T5) had very strong influence on fatigue strength. This enhancement was due to metallurgical changes in the alloy system. Cerium eliminates the porosities and refines microstructures of the alloy, showing the improved fatigue crack growth behaviour. In addition, the fatigue fractured specimens were examined using a scanning electron microscope to clarify the fracture initiation points.  相似文献   

6.
Two Al–Zn–Mg alloys with recrystallised and fibrous grain morphologies are studied with regards to the microstructure after solution heat treatment, cold water quenching and immediate room temperature deformation. It was found that the dislocation movement was localised in narrow slip bands cutting through the dislocation tangles. This observation is related to dynamic strain ageing and to macroscopic shear bands frequently observed in these alloys.  相似文献   

7.
The objective of this work was to conduct a detailed assessment of the microstructure and mechanical properties of an emerging Al–Zn–Mg–Cu powder metallurgy (P/M) alloy known as Alumix 431D. A variety of techniques were considered including optical microscopy, X-ray diffraction, electron-probe micro-analysis, thermal dilatometry, and differential scanning calorimetry as well as apparent hardness, tensile testing, and bending fatigue. Alumix 431D exhibited many of the same attributes found in wrought counter parts such as 7075. A sintered density of approximately 99% of theoretical was achieved, indicating that the alloy was highly responsive to sintering. Once heat treated, a T6 hardness of 86 HRB and a room temperature ultimate tensile strength of 448 MPa were noted. Thermal analyses implied that the precipitation behaviour of Alumix 431D closely mimicked comparable 7XXX series wrought alloys and was largely premised on the precipitation of η-phase variants. Tensile properties of the alloy in a T1 temper were found to be relatively stable at temperatures up to 150 °C and 1000 h of exposure time. Those of T6 specimens degraded under the same exposure conditions to the point where equivalency with the T1 product was noted.  相似文献   

8.
The flow behavior of Al–Cu–Mg–Ag alloy and its microstructural evolution during hot compression deformation were studied by thermal simulation test. The flow stress increased with increasing the strain rate, and decreased with increasing the deforming temperature, which can be described by a constitutive equation in hyperbolic sine function with the hot deformation activation energy 196.27 kJ/mol, and can also be described by a Zener–Hollomon parameter. The dynamic recrystallization only occurred at low Z values, which must be below or equal to a constant of 5.31 × 1013 s−1. With decreasing Z value, the elongated grains coarsed and the tendency of dynamic recrystallization enhanced. Correspondingly, the subgrain size increased and the dislocation density decreased. And the main soften mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization.  相似文献   

9.
The tensile deformation behavior of Ti–3Al–4.5V–5Mo titanium alloy was studied. The results show that there are obvious yield points on true stress–true strain curves of annealing structures, then a stress drop occurs. The curves show linear work-softening after yielding at annealing temperature of 720–780 °C and linear work-hardening at annealing temperature of 800–840 °C. Elastic energy stored in the α-phase is dramatically released after plastic deformation of the β-phase, which leads to the stress drop.  相似文献   

10.
An Al–6Mg alloy matrix composite reinforced with Ti–6Al–4V meshes was fabricated by pressure infiltration method; its damage behaviors impacted by hypervelocity aluminum projectiles were investigated. Results showed that the thin Tif/Al–6Mg composite target exhibits better protection efficiency and energy absorption ability than Al–6Mg alloy target. With projectile sizes increasing, bulge and spallation were observed on the back of the composite target. The Ti–6Al–4V meshes were tensed and deformed drastically in the spallation region, where micro-damages such as interfacial debonding and cracks were dominant. Shear localization was the primary failure characteristic for thin Al–6Mg alloy target. The adiabatic shear bands were observed near the crater of Al–6Mg alloy, not in Tif/Al–6Mg composite target. It was ascribed to the Ti–Al interfacial bonding strength and the high temperature strength for Ti–6Al–4V alloy.  相似文献   

11.
The objective of this research was to investigate the fatigue strength of Ti–6Al–4V using an ultrasonic fatigue system. Fatigue testing up to 109 cycles under fully reversed loading was performed to determine the ultra-high cycle fatigue behavior of Ti–6Al–4V. Endurance limit results were compared to similar data generated on conventional servohydraulic test systems and electromagnetic shaker systems to determine if there are any frequency effects. Fatigue specimens were tested with and without cooling air to determine the effects of increased specimen temperature caused by internal damping due to cycling at a very high frequency. An infrared camera was also used to record specimen temperatures at various load levels. Results indicate that the effects of frequency, including internal heating, on the very high cycle fatigue behavior of Ti–6Al–4V are negligible under fully reversed loading conditions.  相似文献   

12.
Hot compressive behaviors of Ti–6Al–2Zr–1Mo–1V alloy at 1073 K, as well as the evolution of microstructure during deformation process, were investigated in this paper. The results shows that flow stress increases up to a peak stress, then decease with increasing strain, and forms a stable stage at last. The grain size also shows an decrease at first and increase after a minimum value. Dislocations are observed to produce at the interface of α/β phase, and the phase interface and dislocation circle play an important role in impeding the movement of dislocation. As strain increase, micro-deformation bands with high-density dislocation are founded, and dynamic recrystallization occurs.  相似文献   

13.
14.
15.
The fatigue behaviour of titanium alloy Ti–6.5Al–3.5Mo–1.5Zr–0.3Si (TC11) was examined at 520°C to study the effects of microstructural variation on the dwell sensitivity. Three microstructures (equiaxed, tri-modal and basketweave) were used in this study. When a 3-min dwell time was imposed at the peak of each cycle a significant fatigue life reduction was observed for all microstructures tested. Among the three microstructures, equiaxed microstructure showed the strongest fatigue life reduction. The basketweave microstructure had a little higher dwell-time fatigue life than tri-modal microstructure at low maximum stress levels. In all cases, extensive quasi-cleavage facets and planar slips with track-like dislocations have been intimately linked with the dwell sensitive fatigue response. The amount of quasi-cleavage facets and planar slips decreased with a decrease of the α phase content. A rationalization for planar slip was proposed based on the mechanism of dislocations shearing α2 particles. It is believed that α2 particle formation and oxidization effects played an important role in dislocation planar slip.  相似文献   

16.
Al–Li–SiCp composites were fabricated by a modified version of the conventional stir casting technique. Composites containing 8, 12 and 18 vol% SiC particles (40 μm) were fabricated. Hardness, tensile and compressive strengths of the unreinforced alloy and composites were determined. Ageing kinetics and effect of ageing on properties were also investigated. Additions of SiC particles increase the hardness, 0.2% proof stress, ultimate tensile strength and elastic modulus of Al–Li–8%SiC and Al–Li–12%SiC composites. In case of the composite reinforced with 18% SiC particles, although the elastic modulus increases the 0.2% proof stress and compressive strength were only marginally higher than the unreinforced alloy and lower than those of Al–Li–8%SiC and Al–Li–12%SiC composites. Clustering of SiC particles appears to be responsible for reduced the strength of Al–Li–18%SiC composite. The fracture surface of unreinforced 8090 Al-Li alloy (8090Al) shows a dimpled structure, indicating ductile mode of failure. Fracture in composites occurs by a mixed mode, giving rise to a bimodal distribution of dimples in the fracture surface. Cleavage of SiC particles was also observed in the fracture surface of composites. Composites show higher peak hardness and lower peak ageing time compared with unreinforced 8090Al alloy. Macro- and microhardness increase significantly after peak ageing. Ageing also results in considerable improvement in strength of the unreinforced 8090Al alloy and its composites. This is attributed to formation of δ (Al3Li) and S (Al2CuMg) precipitates during ageing. Per cent elongation, however, decreases due to age hardening. Al–Li–12%SiC, which shows marginally lower UTS and compressive strength than the Al–Li–8%SiC composite in extruded condition, exhibits higher strength than Al–Li–8%SiC in peak-aged condition.  相似文献   

17.
The mechanical properties of individually pure and intermetallic phases of typical Al–Ni–Si piston alloys are investigated at different temperatures using hot stage nanoindentation. The hardness and the indentation modulus of a number of phases are determined at room temperature, 500 K and 650 K. Both, hardness and reduced modulus drop with increasing temperature in different ratios for the various phases. Increasing Ni content in the grains improves the mechanical stability of the material at elevated temperatures in general. The indentation patterns are studied using atomic force microscopy with particular reference to the indentation depths and pile-up effects. Site-specific samples from the material surrounding the nanoindents are prepared using a focussed ion beam field emission gun for examination in the transmission electron microscope. This allows direct observation of material changes as a result of the indentation process in the different phases within the alloy system.Corresponding linked atomistic finite element calculations have been carried out for Si and Ni–Al systems as a function of increasing Ni content at various temperatures. The results show only a small difference in the mechanical behaviour of Si between 300 K and 650 K as observed in the experiments. Large differences for Al at both temperatures studied result in an increase of plasticity with rising temperature and atomic motion that changes from slip in well-defined planes to a viscous fluid-like behaviour. The formation of dislocations and slip bands during indentation for the Ni–Al systems is studied.  相似文献   

18.
19.
The yield strengths of Ti–Al–Nb alloys, which undergo stress-induced martensitic transformation, prior to the onset of plastic deformation during tensile testing, were found to obey the Hall–Petch relationship with grain size. The overall friction stress was observed to decrease with increase in Nb content while it remained more or less unchanged with increase in Al content in these alloys. On the other hand, the overall , the unpinning constant, which is an index of the efficiency of boundaries as obstacle to dislocation motion, was found to increase with increase in Nb and decrease with increase in Al content in these alloys.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号