首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piezoelectric energy harvesters (PEH) hold enormous potential for converting mechanical energy from our surrounding environment into electrical energy that can be used for powering portable electronics. Potassium sodium niobate (KNN) is one of the promising alternatives to replace lead-based piezoelectric materials. This work presents a cutting-edge demonstration of synthesis-function-device integration of piezoelectric nanofibers, where the morphology and the composition are engineered towards achieving high device output. We report a flexible nanogenerator based on electrospun Li and Ta-modified lead-free KNN nanofibers yielding a high voltage output of 5.6 V, which is around 9-fold higher than for the Mn-doped KNN nanofibers reported previously. The influence of Li and Ta-incorporation into the KNN lattice on the electromechanical coupling and the effect of a nanofiber morphology are investigated. The net-shaped KNN and Li and Ta-modified KNN nanofibers, synthesized by electrospinning of appropriate sols, maintain their structural integrity upon calcination and firing steps. The phase analysis (XRD) confirms the formation of single-phase (KNN) material. Li and Ta are found to be incorporated on the A and B-sites of the perovskite lattice, respectively. Piezo force microscopy data show the heat-treated nanofibers to exhibit multi-domain ferroelectric properties.  相似文献   

2.
Polyvinylidene fluoride (PVDF) is a piezo‐polymer which among its crystalline phases, the β‐phase has been researched for the improvement of piezoelectric properties. In this study, to improve the β‐phase contents and thereby the piezoelectric response of the polymer, the effect of adding self‐synthesized ionic liquid surfactant (ILS) in PVDF nanofibers is studied. This material is added in different weight percentages into the PVDF solution and the nanofibers are produced by electrospinning to prepare active piezoelectric thin layers. SEM, XRD, FTIR, and piezo‐tests are employed for assessing the effect of the ILS on the enhancement of β‐phase in electrospun nanofibers and their piezoelectric performance. The results indicate ≈98.6% β‐phase formation in the sample containing 4 wt% ILS and in comparison with the pure nanofibers, the output voltage and its power density are improved 186.9% and 275%, respectively. Considering the results, it is suggested that the ILS can improve the piezoelectric response of the polymer in the fabricated structure by simple mixing in solution compared to other additives.  相似文献   

3.
This research work reports on development and characterization of multi-walled carbon nanotube (MWCNT)-doped polyvinylidene difluoride (PVDF) nanofibers by the electrospinning method. PVDF is an extensively studied polymer both theoretically and experimentally due to its appealing ferroelectric, piezoelectric, and pyroelectric properties which strongly favors its promising applications in the development of micro/nanostructure devices. The foremost reason for its ferroelectric and piezoelectric behaviors has been attributed to its crystalline structure, specifically the presence of β-phase; however, the existence of the small percentage of β-phase in pristine PVDF limits its applications. To enhance the electroactive features in the PVDF, MWCNTs have been doped in it to prepare electrospun nanofibers, as electrospinning is a single-step approach. These nonwoven nanofibers were prepared at a DC voltage of 20 kV which were subsequently calcined at 100 °C for 12 h. The estimation of crystal structure and phase identification in these nanofibers have been determined by attenuated FT-IR and XRD, while the morphology, microstructure, mean diameter, and length have been examined by FE-SEM. The observed electrical conductivity, capacitance, permittivity (ε), conductivity (δ), and impedance (Z) in these samples have been tailored by doping a range of MWCNT contents and optimizing the experimental conditions.  相似文献   

4.
This study presents a new type of composite consisting of piezoelectric poly(γ-benzyl-α, l -glutamate) (PBLG) polymer fibers, which contain a large dipole moment, and the elastomer polydimethylsiloxane (PDMS) as the matrix material. PBLG microfibers were fabricated and polarized using the electrospinning method and cast in PDMS to form a unidirectional continuous-fiber composite. The PBLG/PDMS composite was characterized based on various aspects such as crystalline structure, mechanical properties, piezoelectricity, and electromechanical response. The piezoelectric charge constants in the transverse and longitudinal modes were measured to be 10.2 and 54 pC/N, respectively, which are the largest piezoelectric coefficients of biocompatible polymers up to date. The thin PBLG/PDMS composite film can produce up to 200 mV peak-to-peak under sinusoidal actuation and exhibit ultra-sensitivity up to 615 mV N−1. These results show the great potential of the highly flexible piezoelectric polymer fiber-based composite for use in a variety of applications such as energy harvesting devices, biomechanical self-powered structures, and force sensors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48884.  相似文献   

5.
Considerable effort has been devoted to improving the properties of PVDF (polyvinylidene fluoride), arguably the most technologically important piezoelectric polymer. Electrospinning has been found to be a particularly effective method of producing PVDF nanofibers with superior piezoelectric properties due to the resulting exceptionally high fraction of the piezoelectrically active crystalline β-phase. It is typically assumed that the high external electric fields applied during electrospinning enhance the formation of this β-phase, with the confused literature offering various unsatisfactory mechanistic explanations. However, by comparing PVDF nanofibers produced by two different processes (electrospinning and blowspinning), we show that the electric field is entirely unnecessary; indeed, the crystallization dynamics are principally driven by the applied mechanical stress, as evidenced by structurally identical 200 nm diameter PVDF fibers produced with and without external electric fields.  相似文献   

6.
We investigated the effects of annealing temperature and vacuum treatment on the crystallinity and ferroelectric properties of solution‐casted poly(vinylidenefluoride‐co‐trifluoroethylene), P(VDF‐TrFE), thick films. We varied the annealing temperature from 70°C to 150°C and achieved high‐quality ferroelectric thick films annealed at 130°C. Ferroelectric domains and their properties were confirmed using X‐ray diffraction, Fourier transform infrared spectroscopy with attenuated total reflection mode and ferroelectric/piezoelectric measurement systems. Drying and/or annealing in the vacuum allowed for the improvement of crystallinity and ferroelectric/piezoelectric properties. Importantly, the piezoelectric coefficient, d33, of our optimal P(VDF‐TrFE) films after sufficient poling treatment was 36 pC/N and our P(VDF‐TrFE) power generator produced an output voltage of ~6 V under periodic bending and unbending motions. POLYM. ENG. SCI., 54:466–471, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Core‐shell nanofibers of poly (vinylidene fluoride)/polyaniline/multi‐walled carbon nanotubes (PVDF/PANi/MWCNTs) have been produced using the coaxial electrospinning technique. The nanofibers were semiconductive and had better piezoelectric properties than pure PVDF nanofibers. Piezoelectric PVDF nanofibers are capable of converting mechanical energy into electrical energy, which can be stored in charge storage devices. However, PVDF is not conductive and therefore, a conductive associate material is needed to transfer accumulated static charges into the capacitor. Fourier Transform Infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were carried out to study the crystalline β‐phase of PVDF. There was an increase in β‐phase in the electrospun PVDF nanofibers filled with MWCNTs as compared with compression molded samples of neat PVDF. Incorporation of PANi as an intrinsically conductive polymer (ICP) and MWCNTs as conductive nanofiller helps the movement of static charges. Core‐shell nanofibers had conductivities of about seven orders of magnitude higher than simple electrospun nanofibers. POLYM. COMPOS., 35:1198–1203, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Xuefen Wang  Kai Zhang  Hao Yu  Yanmo Chen 《Polymer》2008,49(11):2755-2761
Continuous polymer nanofiber yarns were manufactured by self-bundling electrospinning method. Compared with typical electrospinning setup, the special difference in this method was that a grounded needle tip was used to induce the self-bundling of polymer nanofibers at the beginning of electrospinning process. Four kinds of polymer self-bundling yarns, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polyacrylonitrile (PAN), poly(l-lactic acid) (PLLA) and poly(m-phenylene isophthalamide) (PMIA), were prepared successfully by using this self-bundling electrospinning method. Good alignment of polymer nanofibers in self-bundled yarns was confirmed by SEM observation. It was found out that the conductivity of the polymer solution was crucial to achieve stably continuous self-bundled fiber yarns. A possible mechanism for the self-bundling formation of align nanofiber yarn was proposed.  相似文献   

9.
BACKGROUND: Electrospinning is widely used to produce nanofibers; however, not every polymer can be electrospun into nanofibers. To enhance electrospinability, much effort has been made in designing new apparatus, such as vibration‐electrospinning, magneto‐electrospinning and bubble‐electrospinning. RESULTS: A representative non‐ionic surfactant, TritonR X‐100, is used to enhance electrospinability. The surfactant is added to an electrospun poly(vinyl pyrrolidone) polymer solution, and a dramatic reduction in surface tension is observed. As a result, a moderate voltage is needed to produce fine nanofibers, which are commonly observed during the conventional electrospinning procedure only at elevated voltage. CONCLUSION: The novel strategy produces smaller nanofibers than those obtained without surfactants, and the minimum threshold voltage is much decreased. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
This paper describes PVB/silica nanofibers which were fabricated by electrospinning. Although electrospinning has developed rapidly over the past few years, electrospinning nanofibers are still at a premature research stage which is a process by which polymer nanofibers can be formed when a droplet of viscoelastic polymer solution is subjected to high voltage electrostatic field. PVB/silica nanofibers were obtained when the PVB/silica precursor ratio was 15% and the average diameters ranged from 100 to 200 nm and increased with increasing solution concentration and electrospinning synthesized at 12 kV of the applied voltage. The morphologies and structures of PVB/silica nanofibers were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), Fourier transform infrared spectrometer (FTIR), energy dispersive spectrometer (EDS).  相似文献   

11.
A ferroelectric device, making use of a flexible plastic, polyethylenterephtalate (PET), as a substrate was fabricated by all solution processes. PET was globally coated by a conducting polymer, poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) acid (PEDOT/PSSH), which is used as bottom electrode. The ferroelectric copolymer, poly(vinylidenefluoride–trifluoroethylene) (PVDF–TrFE), thin film was deposited by spin‐coating process from solution. The top electrode, polyaniline, was coated by solution process as well. The ferroelectric properties were measured on this all solution processed all polymer ferroelectric thin‐film devices. A square and symmetric hysteresis loop was observed with high‐polarization level at 15‐V drive voltage on a all polymer device with 700 Å (PVDF–TrFE) film. The relatively inexpensive conducting polyaniline electrode is functional well and therefore is a good candidate as electrode material for ferroelectric polymer thin‐film device. The remnant polarization Pr was 8.5 μC/cm2 before the fatigue. The ferroelectric degradation starts after 1 × 103 times of switching and decreases to 4.9 μC/cm2 after 1 × 105 times of switching. The pulse polarization test shows switching take places as fast as a few micro seconds to reach 90% of the saturated polarization. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Mixed connectivity composites consisting of a ferroelectric ceramic powder of calcium modified lead titanate dispersed in a polymer matrix have been fabricated into piezoelectric bimorph sensors. The piezoelectric, dielectric and electromechanical coupling coefficients of these sensors have been measured and a full characterization of the electromechanical properties are reported. The suitability of these bimorph transducers as in-situ acoustic emission sensors, embedded into glass-epoxy laminate plate like structures, has been investigated. A comparison of the performance of these sensors to those of previously investigated monomorph sensors fabricated from the same material has been made.  相似文献   

13.
In the electrospinning of polymer nanofibers, an electrically driven jet of polymer solution travels to a grounded target to be collected. The morphology of the resulting nanofibers can be manipulated through process parameters, though little work has been done to correlate electrospinning parameters with those of the free‐jet flow of pure liquids. This is essential when the nanofibers hold entrained beaded structures indicative of jet breakup. The effects of applied voltage and solution concentration on the fiber morphology of electrospun aqueous solutions of poly(ethylene oxide) were investigated. Solution concentrations of 4–8 wt % were used along with voltages of 4.5–11 kV to produce nanofibers with and without entrained beads. It was determined that the calculated Weber number for each condition correlated well with the resulting morphology. These results may suggest that Weber number may also be used to predict nanofibers morphology in the electrospinning of other polymer systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
An effective control of the second harmonic generation (SHG) efficiency in electrospun nanofibers of nonlinear optically active 2-methyl-4-nitroaniline and carrier polymer poly(l-lactic acid) (MNA-PLLA) is presented. The SHG efficiency of the MNA-PLLA fibers strongly depends on the diameter of the nanofibers and can be increased up to an order of magnitude by controlling the electrospinning processing parameters. For optimal electrospinning process conditions, MNA-PLLA nanofibers with an effective nonlinear optical coefficient that is two orders of magnitude greater than the counterpart bulk powder MNA may be obtained. The work can be used as a guideline for the manufacture of nanophotonic devices.  相似文献   

15.
An additional centrifugal field applied to an electrostatic field in a novel electrospinning technique was proposed in this study. An additional centrifugal field can not only remove bending instability of electrically charged liquid jets during the electrospinning process but can also fabricate aligned and molecularly oriented nanofibers. The results indicated that combining a strong stretching force from an additional centrifugal field and an electrostatic field can be used to align polymer chains parallel to the nanofiber axis, producing polyacrylonitrile (PAN) nanofibers with superior molecular orientation and mechanical properties. The optimal stretching force of an electrically rotating viscoelastic jet was obtained from high-speed videography and dimensionless groups (Re, We, and Oh numbers) analysis. The dichroic ratio (D) was 0.78, and the chain orientation factor (f), measured via Polarized FT-IR was 0.21. These measurements indicated an increase in the molecular orientation for the fabricated PAN nanofibers via the optimal stretching force. The elastic modulus of PAN nanofibers with f = 0.21 was 6.29 GPa and 4.55 GPa when measured by atomic force microscopy (AFM) and nanoindenter experiments, respectively. These results demonstrated that superior mechanical properties of PAN nanofibers could be improved by conducting the proposed electrospinning technique. Furthermore, carbon nanofibers produced from the optimal PAN nanofibers through the proposed method could potentially be applied for the reinforcement of composites.  相似文献   

16.
Iron oxide nanoparticle coated poly(ethylene oxide) nanofibers as organic–inorganic hybrids with 200–400‐nm diameters were prepared by the in situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through the electrospinning of a poly(ethylene oxide) solution having Fe2+ and Fe3+ ions in a gaseous ammonia atmosphere. Transmission electron microscopy analysis proved the presence of iron oxide nanoparticles on the polymer nanofibers. The thermal properties of the nanofiber mat were also studied with differential scanning calorimetry and thermogravimetric analysis techniques. X‐ray diffraction showed that the formed iron oxide nanoparticles were maghemite nanoparticles. The results were compared with those of the electrospinning of a poly(ethylene oxide) solution having Fe2+ and Fe3+ ions and a pure poly(ethylene oxide) solution in an air atmosphere. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
Baji A  Mai YW  Li Q  Liu Y 《Nanoscale》2011,3(8):3068-3071
Poly(vinylidene fluoride) (PVDF) fibers with diameters ranging from 70 to 400 nm are produced by electrospinning and the effect of fiber size on the ferroelectric β-crystalline phase is determined. Domain switching and associated ferro-/piezo-electric properties of the electrospun PVDF fibers were also determined. The fibers showed well-defined ferroelectric and piezoelectric properties.  相似文献   

18.
The coaxial core/shell composite electrospun nanofibers consisting of relaxor ferroelectric P(VDF-TrFE-CTFE) and ferroelectric P(VDF-TrFE) polymers are successfully tailored towards superior structural, mechanical, and electrical properties over the individual polymers. The core/shell-TrFE/CTFE membrane discloses a more prominent mechanical anisotropy between the revolving direction (RD) and cross direction (CD) associated with a higher tensile modulus of 26.9 MPa and good strength-ductility balance, beneficial from a better degree of nanofiber alignment, the increased density, and C-F bonding. The interfacial coupling between the terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for comparable full-frequency dielectric responses between the core/shell-TrFE/CTFE and pristine terpolymer. Moreover, an impressive piezoelectric coefficient up to 50.5 pm/V is achieved in the core/shell-TrFE/CTFE composite structure. Our findings corroborate the promising approach of coaxial electrospinning in efficiently tuning mechanical and electrical performances of the electrospun core/shell composite nanofiber membranes-based electroactive polymers (EAPs) actuators as artificial muscle implants.  相似文献   

19.
The electrospinning of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) and its blend with polyether sulfone (PES) were investigated and the blend nanofibers were applied as a catalyst in esterification. Attempts to electrospin pure SPPESK resulted in electrospraying rather than electrospinning. However, a blend polymer solution of SPPESK and PES resulted in smooth electrospinning when SPPESK content was lower than 9 wt%. The geometrical properties such as fiber diameter and distribution, surface chemical properties such as inter-molecular interaction and crystalline, mechanical properties were investigated by SEM, FTIR, XRD, etc. The catalytic activities of SPPESK-PES nanofibers were measured by esterification of ethanol with acetic acid. A pseudo-homogeneous model was established to describe the kinetics of esterification with nanofiber as a catalyst. The results showed that the SPPESK-PES blend nanofiber had a high specific surface area (46.7–58.9 m2/g), good mechanical properties, good catalytic properties (ethanol conversion up to 80 % when reacted 8 h), and good forward rate constants (10.0?×?10?3–14.6?×?10?3 L/(mol?min)).  相似文献   

20.
Among the wide variety of piezoelectric materials available, polymers offer an interesting solution because of their high mechanical flexibility, easy processing, and conformable features; they maintain good ferroelectric and piezoelectric properties. The most prominent examples of these are poly(vinylidene fluoride) (PVDF) and its copolymer, poly(vinylidene difluoride–trifluoroethylene) [P(VDF–TrFE)]. An attractive prospective consists of the preparation of nanostructured polymers. It has been shown that the dimensional confinement of such macromolecules down to the nanoscale can improve their piezoelectric properties because the tailoring of the chemical structure is performed at the molecular level. In this review, we show how nanostructured polymers can be obtained and discuss reports on the ferroelectric and piezoelectric properties of nanostructured PVDF and P(VDF–TrFE) materials. In particular, we show how dimensional confinement leads to piezoelectric nanostructures with relevant performances, with a focus on the macromolecular structural arrangement that enhances their behavior. Experimental results and applications are also reported to compare the performances of different nanostructuration processes and the polymer efficiencies as piezoelectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41667.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号