首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The methods of homogenization and finite elements are employed to predict the effective elastic constants and stress-strain responses of a new type of lattice structure, the X-structure proposed by the authors in a companion paper. It is shown that in most cases the predictions by the equivalent homogenization theory agree well with the experimental and 3-dimensional finite element calculated results. The theoretical and numerical study supports the argument that the X-structure is superior to the pyramid lattice structure in terms of mechanical strength. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB601202), the National Natural Science Foundation of China (Grant Nos. 10632060, 10825210), the National “111” Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519)  相似文献   

2.
On the numerical simulation of active scalar, a new explicit algebraic expression on active scalar flux was derived based on Wikstr?m, Wallin and Johansson model (a WWJ model). Reynolds stress algebraic expressions were added by a term to account for the buoyancy effect. The new explicit Reynolds stress and active scalar flux model was then established. Governing equations of this model were solved by finite volume method with unstructured grids. The thermal shear stratified cylinder wake flow was computed by this new model. The computational results are in good agreement with laboratorial measurements. This work is the development on modeling of explicit algebraic Reynolds stress and scalar flux, and is also a further modification of the a WWJ model for complex situations such as a shear stratified flow. Supported by the National Nature Science Foundation of China (Grant Nos. 50679019, 50009001), the National Basic Research Program of China (“973” Project) (Grant No. 2008CB418202), the Project of “Six Talent Peak” of Jiangsu Province (08-C), Social Technology Development Foundation of Jiangsu Province (Grant No. BS2006095) and the “908” Special Foundation of Jiangsu Province (Grant No. JS-908-02-06)  相似文献   

3.
The development of Hydro-Informatic Modelling System (HIMS) provides an integrated platform for hydrological simulation. To extend the application of HIMS, an ecohydrological modeling system named ecohydrological assessment tool (EcoHAT) has been developed. Integrating parameter-management tools, RS (remote sensing) inversion tools, module-design tools and GIS analysis tools, the EcoHAT provides an integrated tool to simulate ecohydrological processes on regional scale, which develops a new method on sustainable use of water. EcoHAT has been applied to several case studies, such as, the Yellow River Basin, the acid deposition area in Guizhou province and the riparian catchment of Guanting reservoir in Beijing. Results prove that EcoHAT can efficiently simulate and analysis the ecohydrological processes on regional scale and provide technical support to integrated water resources management on basin scale. Supported by the National Key Technology R&D Program in the 11th Five-year Plan of China (Grant No. 2006BAB06B07), the National Natural Science Foundation of China (Grant No. 40671123), the National Basic Research Program of China (“973” Project) (Grant Nos. 2005CB422207, G19990436), and the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA12Z145)  相似文献   

4.
The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ɛ), ɛ=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium. Supported by the National Basic Research Program of China (“973” Project) (Grant Nos. 2006CB601202, 2006CB601203), the National Natural Science Foundation of China (Grant Nos. 10572111, 10632060), the National 111 Project of China (Grant No. B06024) and the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA03Z519).  相似文献   

5.
Based on the theories of surface physical chemistry, theoretical formulations for permeability and porosity are presented which include both stress effect and matrix shrinkage in a single equation. Then, a three-dimensional, dual porosity, nonequilibrium adsorption, pseudosteady state mathematical model for gas and water is established and solved by the fully implicit method and the block preconditioning orthomin algorithm. A history matching for the Qinshui Well TL003 is done. From the results, it is shown that the obvious enhancement of permeability occurs along with the passing time but the reservoir pressure of 15# coal seam cannot fulfill the critical adsorption pressure as a result of the water recharge of the aquifer. Hence, it is suggested to plug the 15# coal seam. Supported by the National High Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA06Z236) and the National Basic Research Program (“973” Project) (Grant No. 2002CB11708)  相似文献   

6.
Multi-channel micro neural probe fabricated with SOI   总被引:1,自引:0,他引:1  
Silicon-on-insulator(SOI) substrate is widely used in micro-electro-mechanical systems(MEMS).With the buried oxide layer of SOI acting as an etching stop,silicon based micro neural probe can be fabri-cated with improved uniformity and manufacturability.A seven-record-site neural probe was formed by inductive-coupled plasma(ICP) dry etching of an SOI substrate.The thickness of the probe is 15 μm.The shaft of the probe has dimensions of 3 mm×100 μm×15 μm with typical area of the record site of 78.5 μm2.The im...  相似文献   

7.
Microwave-induced thermo-acoustic tomography (MITAT) is a promising technique with great potential in biomedical imaging. It has both the high contrast of the microwave imaging and the high resolution of the ultrasound imaging. In this paper, the proportional relationship between the absorbed microwave energy distribution and the induced ultrasound source distribution is derived. Further, the time reversal mirror (TRM) technique based on the pseudo-spectral time domain (PSTD) method is applied to MITAT system. The simulation results show that high contrast and resolution can be achieved by the TRM technique based on PSTD method even for the received signals with very low signal-to-noise ratio (SNR) and the model parameter with random fluctuation. Supported by the National Natural Science Foundation of China (Grant No. 60771042), the National Hi-Tech Research and Development Program (“863” Project) (Grant No. 2007AA12Z159), 111 Project (Grant No. B07046), SiChuan Excellent Youth Foundation (Grant No. 08ZQ026-039), Program for New Century Excellent Talents in University of China and Program for Changjiang Scholars  相似文献   

8.
An Si/O patterned shell array was fabricated by a technique utilizing nanosphere self assembly and reactive pressure pulsed laser deposition. The nanostructure produced by this technique enhanced the luminescence intensity by a factor of three compared with that of a flat film. The amount of enhancement observed coincided well with the expected enhancement by simulation. The technique in this paper provided a flexible, designable and compatible approach to luminescence enhancement. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2002CB613505) and the National Nature Science Foundation of China (Grant No. 90206046)  相似文献   

9.
Monte Carlo (MC) method, which tracks small numbers of the dispersed simulation particles and then describes the dynamic evolution of large numbers of real particles, constitutes an important class of methods for the numerical solution of population balance modeling. Particle coagulation dynamics is a complex task for MC. Event-driven MC exhibits higher accuracy and efficiency than time-driven MC on the whole. However, these available event-driven MCs track the “equally weighted simulation particle population” and maintain the number of simulated particles within bounds at the cost of “regulating” computational domain, which results in some constraints and drawbacks. This study designed the procedure of “differently weighted fictitious particle population” and the corresponding coagulation rule for differently weighted fictitious particles. And then, a new event-driven MC method was promoted to describe the coagulation dynamics between differently weighted fictitious particles, where “constant number scheme” and “stepwise constant number scheme” were developed to maintain the number of fictitious particles within bounds as well as the constant computational domain. The MC is named event-driven constant volume (EDCV) method. The quantitative comparison among several popular MCs shows that the EDCV method has the advantages of computational precision and computational efficiency over other available MCs. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2006CB705800), the National Natural Science Foundation of China (Grant No. 20606015) and the Fok Ying Tong Education Foundation (Grant No. 114017)  相似文献   

10.
The high-dense nanocrystalline BaTiO3 (BT) ceramics with grain size smaller than 100 nm have been successfully prepared by the two step sintering and the spark plasma sintering (SPS) process. The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic, tetragonal and cubic transitions, similar to those in coarse BT ceramics, were revealed by in-situ temperature dependent Raman spectrum. The multiphase coexistence and the diffused phase transition character were demonstrated in the 8 nm nanocrystalline BT ceramics. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2002CB613301) and the National Natural Science Foundation of China (Grant No. 50872093)  相似文献   

11.
Magnetic activity indices are widely used in theoretical studies of solar-terrestrial coupling and space weather prediction. However, the indices suffer from various uncertainties, which limit their application and even mislead to incorrect conclusion. In this paper we analyze three most popular indices, Kp, AE and Dst. Three categories of uncertainties in magnetic indices are discussed: “data uncertainty” originating from inadequate data processing, “station uncertainty” caused by incomplete station covering, and “physical uncertainty” stemming from unclear physical mechanism. A comparison between magnetic disturbances and related indices indicate that the residual Sq will cause an uncertainty of 1–2 in K measurement, the uncertainty in saturated AE is as much as 50%, and the uncertainty in Dst index caused by the partial ring currents is about a half of the partial ring current. Supported by the National Natural Science Foundation of China (Grant No. 40436016), the National Basic Research Program of China (“973”) (Grant No. 2006CB806305), and the KIP Pilot Project of the Chinese Academy of Sciences (Grant No. kzcx3-sw-144)  相似文献   

12.
Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under three-dimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB714203), the China Postdoctoral Science Foundation (Grant Nos. 20080430219, 20081476) and the Foundation for Seismological Researches, China Earthquake Administration (Grant No. 200808022)  相似文献   

13.
This paper firstly evaluated the impedance method and traveling waves method for fault location, and studied the robustness of fault location method based on impedance. Then it proposed an assembled fault location method for a transmission line based on single-terminal electrical quantities, in which the fault zone was firstly determined by impedance method with robustness then the accurate fault position was pinpointed by traveling waves method. EMTP (Electromagnetic Transient Program) simulations showed that the proposed method can overcome the drawbacks of impedance method and traveling waves method when either one is used alone, and improve both the accuracy and the reliability of fault location. Supported by the National Natural Science Foundation of China (Grant Nos. 50077011 and 50377019) and the National Basic Research Program of China (“973” Project) (Grant No. 2004CB217906)  相似文献   

14.
The IASC-ASCE Structural Health Monitoring Task Group developed a series of benchmark problems, and participants of the benchmark study were charged with using a 12-degree-of-freedom (DOF) shear building as their identification model. The present article addresses improperness, including the parameter and modeling errors, of using this particular model for the intended purpose of damage detection, while the measurements of damaged structures are synthesized from a full-order finite-element model. In addressing parameter errors, a model calibration procedure is utilized to tune the mass and stiffness matrices of the baseline identification model, and a 12-DOF shear building model that preserves the first three modes of the full-order model is obtained. Sequentially, this calibrated model is employed as the baseline model while performing the damage detection under various damage scenarios. Numerical results indicate that the 12-DOF shear building model is an over-simplified identification model, through which only idealized damage situations for the benchmark structure can be detected. It is suggested that a more sophisticated 3-dimensional frame structure model should be adopted as the identification model, if one intends to detect local member damages correctly. Supported by the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA09Z331) and the National Science Fund for Distinguished Young Scholars (Grant No. 50325927)  相似文献   

15.
Based on the empirical electron theory of solids and molecules (EET), the statistical values of valence electron structure parameters Sn A and SE A which can characterize the properties of alloy phases are calculated, and influences of alloying elements (e.g., V, Nb, Mo, Hf, Zr, Fe, Mn, Co, Cr, Si, and so on) on the phase transition temperature and eutectoid reaction of titanium alloy are discussed with the statistical values of valence electron structure parameters. The research results agree well with real situations. Supported by the National Natural Science Foundation of China (Grant No. 50471022, 50741004) and National Key Basic Research Program of China (“973”) (Grant No. 2007CB613807)  相似文献   

16.
Using the data from STAFF/TC-1, this paper for the first time analyzes the electromagnetic interferences of Chinese scientific satellite. The electromagnetic interference of satellite exists mainly below 30 Hz, but can extend to 190 Hz with an obviously decreasing power spectral density. The electromagnetic interferences at frequencies below 190 Hz have good correlation with the solar aspect angle. The electromagnetic interferences at frequencies between 190 and 830 Hz have also correlation with solar aspect angle. However, the electromagnetic interferences at frequencies above 830 Hz have no correlation with the solar aspect angle. The correlation coefficient between solar aspect angel and electromagnetic interferences is around 0.90. The larger the solar aspect angle, the stronger the satellite electromagnetic interference. When the solar aspect angle increases from 90.6° to 93.6°, the electromagnetic interferences at frequencies <10 Hz increase by 8 times and those at frequencies 190–830 Hz increase by 60%. This close association of electromagnetic interferences with the solar aspect angle indicates that the solar aspect angle is the main factor to determine the electromagnetic interferences. The electromagnetic interferences of satellite in sunlight are larger than those in eclipse. The electromagnetic interference produced by solar panel occupies about 87% in the low frequency band (<100 Hz) and 94% in the high frequency band (>100 Hz) of the total electromagnetic interference produced by satellite. These in flight observations of electromagnetic radiation of satellites will be very helpful to the designs of future satellites of space sciences or earthquake sciences. Supported by the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2008AA12A216), the National Science & Technology Supporting Program during the Eleventh Five-Year Plan, the National Natural Science Foundation of China (Grant No. 40523006), the National Basic Research Program of China (“973” Project) (Grant No. 2006CB806305), and the Specialized Research Fund for State Key Laboratories  相似文献   

17.
Abstrac  X-ray pulsar navigation (XPNAV) is a new approach for spacecraft autonomous navigation. The system gets position information utilizing accurate timing methods. Among the timing models, the high-order relativistic effects on the propagated signal must be incorporated to attain precise timing. The time transfer model is provided in detail here in two parts: the time frame transformation and the relativistic effects. Supported by the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2008AA12Z304)  相似文献   

18.
The environmental problem caused by refrigerant has become the focus all over the world. As the most typical natural refrigerant, CO2, of course, becomes the research focus. This paper introduces the development and application status of CO2 refrigeration and heat pump technology. The researches on CO2 refrigeration and heat pump, carried out by Thermal Energy Research Institute, Tianjin University, also are presented in this paper. Supported by the National Natural Science Foundation of China (Grant Nos. 50676064, 50506019) and the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2007AA05Z262)  相似文献   

19.
The punching thru mechanism of gate oxide (thickness about 15A) was investigated. Because of the thin thickness of gate oxide, gate oxide punching thru may easily happen during the plasma process. It was found that what caused the punching thru was not only the selectivity of poly-silicon/oxide but also the pattern topography. We used the basic SRAM pattern to check this topography effect, and found that gate oxide located at the narrow spacing of two parallel serpentine lines was the most easily punched thru. What caused the topography effect was the starvation of oxygen in these places which were induced by the residue of poly-silicon and enhanced by electron shading effect. So, to solve the issue of gate oxide punching thru, firstly the selectivity should be enough, secondly we should pay attention to the etching pattern topography. Supported by the National High-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA843134) and the National Basic Research Program of China ("973" Project) (Grant No. 2007CB935302)  相似文献   

20.
In this paper, optimum positioning of cylindrical cutter for five-axis flank milling of non-developable ruled surface is addressed from the perspective of surface approximation. Based on the developed. interchangeability principle, global optimization of the five-axis tool path is modeled as approximation of the tool envelope surface to the data points on the design surface following the minimum zone criterion recommended by ANSI and ISO standards for tolerance evaluation. By using the signed point-to-surface distance function, tool path plannings for semi-finish and finish millings are formulated as two constrained optimization problems in a unified framework. Based on the second order Taylor approximation of the distance function, a sequential approximation algorithm along with a hierarchical algorithmic structure is developed for the optimization. Numerical examples are presented to confirm the validity of the proposed approach. Supported by the National Natural Science Foundation of China (Grant Nos. 50775147 and 50835004), the National Basic Research Program of China (“973” Project) (Grant No. 2005CB724103), and the Science & Technology Commission of Shanghai Municipality (Grant No. 07JC14028)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号