首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To determine the possibility of using leather waste as reinforcing filler in the thermoplastic polymer composite, acrylonitrile–butadiene–styrene (ABS) as the matrix and leather buffing powder as reinforcing filler were used to prepare a particulate reinforced composite to determine testing data for the physical, mechanical, and thermal properties of the composites, according to the filler loading in respect to thermoplastic polymer. The ABS and leather powder composites were prepared by the extrusion of ABS with 2.5, 5, 7.5, 10, 12.5, and 15 wt % of leather powder in corotating twin screw extruder. The extruded strands were cut into pellets and injection molded to make specimens. These specimens were tested for physicomechanical properties like tensile and flexural strengths, tensile and flexural modulus, Izod and charpy impact strength, abrasion resistance, Rockwell hardness, density, Heat deflection temperature (HDT) and Vicat softening point (VSP), water absorption, and thermal degradation analysis. The incorporation of leather waste powder does not affect the tensile, flexural strengths, Izod impact strength, abrasion resistance, Rockwell hardness, density, HDT and VSP values drastically. However, the tensile modulus, tensile elongation, and charpy impact strength values are reduced significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3062–3066, 2006  相似文献   

2.
To enhance the interfacial interaction in silica nanoparticles filled polymer composites, the silica surface was firstly treated with glycidoxypropyl trimethoxysilane (GPTMS), and its structure was analyzed by 13C NMR and FTIR spectrophotometry. Then a series of GPTMS-modified silica/cycloaliphatic epoxy nanocomposite coatings with 0–6 wt% silica content were prepared by UV-induced cationic polymerization in the presence of a diaryliodonium photoinitiator and thioxanthone photosensitizer. The physical and mechanical properties such as hardness, adhesion, gloss, impact as well as tensile strength were examined. As a result, these composites demonstrated superior tensile strength and tensile modulus with increasing proportion of modified silica up to a certain level. An increase in abrasion resistance of nanocomposites with the addition of modified silica was observed. The thermal stability of nanocomposites was not enhanced with the addition of silica particles. SEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.  相似文献   

3.
Bio‐waste materials such as eggshell (ES) and fishbone (FB) were used as new fillers compared with commercial calcium carbonate (CC) in natural rubber composite. The effect of their presence in the rubber mix on the rheometric study, morphology, mechanical properties, hardness, and abrasion resistance has been investigated at constant filler content (30 phr). The filler and their composites were characterized by Fourier‐transform infrared, X‐ray diffraction, thermogravimetric analysis, and scanning electron microscope (SEM). The results showed that the cure time and scorch time of the composites filled with CC and ES are lower than the composites filled FB filler. On the other hand, composites with ES and CC showed enhanced values of tensile, modulus at 100% and 300% elongation, hardness, and abrasion resistance. The morphological data revealed that CC and ES fillers are better dispersed in the rubber matrix than FB filler. J. VINYL ADDIT. TECHNOL., 26:309–315, 2020. © 2019 Society of Plastics Engineers  相似文献   

4.
In this article, flame retardancy thermoplastic composites were developed by extrusion followed by injection molding using recycled Tetra Pak packaging material (TPP) waste and high‐density polyethylene (HDPE) with addition of ammonium polyphosphate (APP) and melamine (MEL) as intumescent flame retardants (FRs). The influences of intumescent FRs on the properties of composites were investigated. FRs loading positively affected flame retardancy, but deteriorated mechanical properties as the loading rate was more than 30 wt%. Considering the fire retardancy and tensile strength (TS), the content of FR should not be more than 30 wt%. When the ratio of APP/MEL was less than 3/1, both combustion behavior and TS of the composites were improved with the increased FR loading, which was supported and verified by the analysis of FTIR spectra and SEM images. The thermogravimetric analysis results indicated that the incorporation APP and/or APP and MEL into composites as FRs into composites promoted char formation and correspondingly improved the thermal stability. The synergistic effect of APP and MEL in the intumescent FR system further improved the flame retardancy of the composites. POLYM. COMPOS., 37:1797–1804, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Biocomposites of styrene butadiene rubber (SBR) reinforced with silane-treated peanut shell powder (SPSP) of different filler loadings and particle sizes were prepared by two roll mixing mills with sulfur as a vulcanizing agent. The cure characteristics of composites were studied, and they vulcanized at 160 °C. Test samples were prepared by compression moulding, and their physicomechanical properties, such as tensile strength tear strength, modulus, hardness, and abrasion resistance of SBR vulcanizates, were studied with filler loading 0, 5, 10, 15, and 20 parts per hundred rubber (phr). Composites with 10 phr filler having small particle size exhibited better properties. The interfacial adhesion between filler and matrix has a major role in the properties of composites. Surface modification of PSP was done by silane coupling agent to improve the interfacial adhesion and it characterised by FTIR, XRD, TGA, UV, and SEM. Better properties are shown by the composites with SPSP. Thermal stability of the composites was also determined using thermogravimetric analysis.  相似文献   

6.
周俊  雷毅 《塑料工业》2022,50(1):73-78
合成一种氨基封端的聚砜(PSF-NH12)并添加至环氧树脂中制备复合材料.采用傅里叶变换红外光谱(FTIR)、热重分析(TG)、动态力学分析(DMA)和扫描电子显微镜(SEM)等方法对复合材料的结构与性能进行了研究.研究表明,添加适量的PSF-NH2可以使复合材料保持均相体系,当PSF-NH2含量为2.50%时,冲击强...  相似文献   

7.
《Polymer Composites》2017,38(7):1231-1240
The main objective of this research is to study the effect of recycled low density polyethylene (r‐LDPE) matrix on the tensile, impact, and flexural properties of the novel textile waste cotton fiber reinforced (T‐FRP) composites. For this purpose, the T‐FRP composites were manufactured by using two different matrix types; namely, virgin LPDE (v‐LDPE) and r‐LDPE, with different waste cotton fiber content. All composites were compatibilized by maleic anhydride‐LDPE (MA‐LDPE) in order to increase the interfacial adhesion between fibers and matrices. Differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analyzer studies were performed in order to characterize the materials. The results have shown that best tensile and flexural properties have been obtained from the composites with the content of 30 wt% cotton fiber, 5 wt% maleic anhydride‐LDPE, and 65 wt% recycled LDPE matrix. However, the impact properties of the composites were decreased drastically compared to the pure LDPE matrix. POLYM. COMPOS., 38:1231–1240, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
Composites of Phormium tenax fibers in a poly(lactic acid) matrix with fiber content of up to 40 wt%, produced by injection molding and twin screw compounding, were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical tests (static and dynamic). Thermal analysis showed that cold‐crystallization peak shifted to lower temperatures with increasing fiber content, confirming that the addition of Phormium fiber has the effect of promoting crystallinity. Dynamic mechanical analysis (DMA) results showed that the addition of Phormium fiber did not affect significantly the Tg of the polymer and the area under the tan δ decreased with the addition of Phormium fiber. Tensile modulus has been consistently increased by reinforcing the composite with growing amounts of fibers, whilst the effect on tensile strength is less evident. SEM micrographs of fracture surfaces allowed highlighting failure modes of the composites, which included a diffuse presence of fiber pull‐out and debonding. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
Nylon 10 10–montmorillonite nanocomposite has been prepared successfully using intercalating polymerization. The nanocomposite was investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR), Atom force microscopy (AFM), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC), and Dynamic mechanical analysis (DMA). The results show that there are uniformly dispersed silicate layers in the nylon 10 10 matrix. The resulting nanocomposites have higher onset decomposition temperature and dynamic storage moduli than those of pure nylon 10 10. In addition, it was found that montmorillonite plays an important role in heterophase nucleation of the crystallization of nylon 10 10 in composites. Mechanical testing shows that the tensile modulus of nanocomposites is superior to that of nylon 10 10, and the ultimate strain values of the nanocomposites remain at a level similar to nylon 10 10 if the content of montmorillonite is not more than 6 wt%.  相似文献   

10.
The manufacture of wood plastic composites (WPCs) by reutilizing post‐consumed polymeric materials and post‐industry wood wastes contributes to reduce the environmental impact and the consumption of virgin plastics. In this work, the influence of interfacial adhesion on the solid and molten states of high density polyethylene (HDPE) containing WPCs wood dust of recycled Pinus taeda (PT) was evaluated. The composites were prepared by extrusion in a twin screw extruder using maleic anhydride as compatibilizer. The samples were analyzed by dynamic‐mechanical analysis (DMA), tensile and impact strength measurements, oscillatory rheometry, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). DMA analysis showed increase in module and an improved interface with physical interaction between the WPCs phases. The higher molecular interactivity interface improved the mechanical properties relative to pure HDPE. Melting state analysis showed increased WPCs flow restriction, this feature being correlated with reduction in the molecular degree of freedom during flow, which consequently reduces the crystalline degree changes in microstructure as well as in processing parameters of the material. These results lead to consider the development of an eco‐friendly and economic effective technology to reuse abundant recycled solid wastes in a new market. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42887.  相似文献   

11.
This study presents the preparation of post-consumer polypropylene (r-PP) composites filled with 30 wt% yerba mate (YM) stick particles. To improve the fiber–matrix adhesion, three surface treatments were performed: alkaline treatment with sodium hydroxide (NaOH) and use of 3-aminopropyltriethoxysilane (APTS) and maleic anhydride graft polypropylene copolymer (PP-g-MA) as coupling agents. Mechanical properties including tensile, flexural, and impact resistance were determined, and chemical (Fourier transform infrared spectroscopy [FTIR]), physical (water absorption), and morphological analyses were performed. The main findings show that the treatments were efficient in improving the mechanical properties of the composites, with emphasis on the r-PP/YM30/APTS and r-PP/YM30/PP-g-MA composites, which proved to be superior in tensile, flexion and impact strength and absorption of water compared to the untreated composite. The morphological analysis showed a better interaction between the fiber and the polymeric matrix for the composites with YM/APTS and YM/PP-g-MA, which corroborates the results of tensile and flexural strength, as well as with the spectra of FTIR in which the chemical modification of the fibers is observed. However, the results show that these treatments are promising in obtaining composites with recycled matrix with better properties.  相似文献   

12.
Composites of ultrafine polyhedral oligomeric octaphenyl silsesquioxane (OPS) and polycarbonate (PC) were prepared by melt blending. The mechanical and thermal properties of the composites were characterized by tensile and flexural tests, impact test, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). Rheological properties of these melts were tested by torque rheometer. The flame retardancy of the composites was tested by limiting oxygen index (LOI), the vertical burning (UL‐94), and cone calorimeter test. The char residue was characterized by scanning electron microscope (SEM) and ATR‐FTIR spectrum. Furthermore, the dispersion of OPS particles in the PC matrix was evidenced by SEM. The results indicate that the glass transition temperatures (Tg) and torque of the composites decrease with increasing OPS loading. The onset decomposition temperatures of composites are lower than that of PC. The LOI value and UL‐94 rating of the PC/OPS composites increase with increasing loading of OPS. When OPS loading reaches 6 wt %, the LOI value is 33.8%, UL‐94 (1.6 mm) V‐0 rating is obtained, and peak heat release rate (PHRR) decreases from 570 to 292 kJ m?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
This study aims to develop and characterize the nanocomposites using sulfur cross-linked carboxylated styrene-butadiene rubbers (S-xSBR) as the matrix and chitin nanocrystals (CNCs) as nanofillers. The composites’ morphology and properties were examined by light transmittances, fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), dynamic mechanical analysis (DMA), thermo gravimetric analyzer (TGA), and tensile properties determination. The addition of CNCs has slight effect on transparency of the composite films. FTIR data confirm the interfacial interactions between CNCs and S-xSBR via hydrogen bonds. CNCs are uniformly dispersed in the matrix from SEM result. The addition of CNCs can significantly improve the tensile strength and modulus both in static and dynamic states. The tensile modulus and tensile strength of S-xSBR/CNCs composites with the 4 wt.% CNCs is 62.5 % and 97.6 % higher than that of pure S-xSBR. The storage modulus, glass transition temperature, and the thermal stability of the composites are higher than those of the neat S-xSBR. The mechanical properties of the composite films are water-responsive, as the swollen samples exhibit obviously decreased strength and modulus. The greatest mechanical contrast is shown in the S-xSBR/CNCs composites with 2 wt.% CNCs loading whose tensile modulus decrease from 60.4 to 6.1 MPa after swelling equilibrium. The significant reinforcement effect of CNCs on S-xSBR is attributed to the unique structure of CNCs and the interfacial interactions in the composite.  相似文献   

14.
Waterborne polyurethane dispersions (WPUDs) were synthesized successfully from castor oil-based polyol, isophorone diisocyanate and dimethylol propionic acid with NCO/OH ratio of 1.5. Different weight percentages of cloisite 30B (1, 2, and 3 wt%) were loaded with WPUDs to prepare nanocomposite films. Prepared prepolymer and nanocomposite films were characterized using FTIR, XRD, SEM, TEM, DSC, and TGA techniques, and coating properties, such as pencil hardness, abrasion resistance, impact resistance, and contact angle, were evaluated. The results obtained from different amounts of clay loading were compared with the pristine castor oil-based WPUDs. The FTIR spectra deconvolution technique was used to study the hydrogen bonding effect within the polymer with an increase in clay content. TGA analysis showed that the thermal stability of WPUDs increases with cloisite 30B (C30B) content. The surface morphology and hydrophilicity/hydrophobicity nature of the nanocomposite films were characterized using scanning electron microscopy and contact angle measurement. The results obtained from tensile tests indicated that the mechanical property of the dispersion system improved with C30B content. A high-performance castor oil-based nanocomposite coating with low volatile organic component can be targeted as an outcome of this work.  相似文献   

15.
Effect of plasticizer type on the kraft lignin–natural rubber composite microstructure and selected properties was determined. The composites were prepared with addition of a commonly used naphthenic oil plasticizer to study the decomposition product of polyurethane (glycerolysate) and its characteristics. Kraft lignin powder was incorporated into the natural rubber matrix in amounts of 10 and 40 parts per 100 parts of natural rubber (phr). The reference samples were prepared without any lignin present. The chemical interaction between the filler particles and natural rubber macromolecules was analyzed by Fourier transform infrared spectroscopy (FTIR) and the adhesion was characterized by scanning electron microscopy (SEM). The results of the adhesion measurements confirmed poor distribution of lignin particles into the natural rubber matrix with increasing filler content. Optimal lignin content in the composites was 10 phr in the case of both plasticizers. Moreover, the results of FTIR verified the formation of non-covalent bonds and the need for modification of the filler to enhance the reinforcing effect in the natural rubber matrix. Dynamic mechanical analysis (DMA) and mechanical measurements proved that the specimen containing 10 phr of lignin with the use of glycerolysate as plasticizer displayed the highest mechanical performance. It was demonstrated that glycerolysate and naphthenic oil as plasticizing agents showed similar effect on the thermal properties of the prepared composites. Also, the measured mechanical properties, such as tensile strength, hardness, resilience, and abrasiveness confirmed these findings.  相似文献   

16.
Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.  相似文献   

17.
王春  徐欣蔷  杨彪 《中国塑料》2018,32(6):119-123
将聚乙烯醇缩丁醛(PVB)作为非反应型界面改性剂用于聚已二酸-对苯二甲酸丁二酯(PBAT)/竹粉木塑复合材料的制备,考察了其界面改性效果及对材料力学性能的影响。PVB分子中的羟基与缩醛基可以分别与竹粉表面的极性基团以及树脂基体相互作用,从而提高复合材料的界面相容性。结果表明,PVB直接添加或溶液添加对复合材料的力学性能影响不大;PVB使PBAT与竹粉的界面结合明显改善。在竹粉含量为30 %(质量分数,下同)下,PVB含量为竹粉含量的1 %时,复合材料的拉伸强度从5.16 MPa提高到6.02 MPa。  相似文献   

18.
利用自行合成的端基为环氧基的热致性环氧液晶(LCE)与酚醛树脂(PF)通过熔融挤出进行原位复合制备了LCE/PF复合材料。研究了LCE含量对LCE/PF复合材料力学性能、硬度及摩擦性能的影响,使用扫描电子显微镜(SEM)观察了复合材料的磨损面形貌,分析了复合材料的摩擦磨损机理。研究结果表明:LCE含量为2.5%时,摩擦系数比未加LCE的稳定,力学性能也有所提高;在各温度下,LCE含量为7.5%的复合材料的体积磨损率比未加LCE的复合材料的小达,到了GB 5763—2008的要求。  相似文献   

19.
Poly (vinylbutyral) (PVB) was synthesized by condensation of poly (vinylalcohol) (PVA) with butyraldehyde. Nanocomposites of PVB with graphene (0.1 to 0.6?wt%) were prepared via solution blending. The structure and properties of prepared compounds were characterized by FT-IR, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and tensile strength tester (TST). The prepared nanocomposites showed considerable thermal and mechanical properties than PVB and showed good toughness and flexibility.  相似文献   

20.
顾红艳  路琴 《中国塑料》2009,23(9):44-48
对纳米AlN、Si3N4、TiN填充的聚四氟乙烯(PTFE)复合材料进行了力学性能与摩擦磨损性能测试,研究了纳米粒子种类和含量对PTFE力学性能和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对拉伸断面形貌进行观察,探讨了复合材料的相关机理。研究结果表明,纳米AlN、Si3N4、TiN的填充均能提高PTFE的硬度和耐磨性;PTFE纳米复合材料的拉伸强度和断裂伸长率均有所下降,PTFE/TiN复合材料的降幅最小;3种纳米填料均使PTFE的冲击强度下降,PTFE/TiN和PTFE/Si3N4复合材料冲击强度的降幅较小;SEM分析表明,纳米TiN在PTFE基体中有较好的分散性,与PTFE基体界面结合较好,纳米AlN、Si3N4在PTFE基体中的分散性较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号