首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The employment of lightweight structures is one of the most important goals in various industries. The lightweight sandwich panel is an excellent energy absorber and also a perfect way for decreasing the risk of impact. In this paper, a numerical study of high-velocity impact on honeycomb sandwich panels reinforced with polymer foam was performed. The results of numerical simulation are compared with the experimental findings. The numerical modeling of high-velocity penetration process was carried out using nonlinear explicit finite-element code, LS-DYNA. The aluminum honeycomb structure, unfilled honeycomb sandwich panel, and the sandwich panels filled with three types of polyurethane foam (foam 1: 56.94, foam 2: 108.65, and foam 3: 137.13 kg/m3) were investigated to demonstrate damage modes, ballistic limit velocity, absorbed energy, and specific energy absorption (SEA) capacity. The numerical ballistic limit velocity of sandwich panels, filled with three types of foam, was more than that of a bare honeycomb core and unfilled sandwich panel. In addition, the numerical results showed that the sandwich panel filled with the highest density foam could increase the strength of sandwich panel and the numerical specific energy absorption of this structure was 23% more than that of unfilled. Finally, the numerical results were in good agreement with experimental findings.

  相似文献   

2.
Through‐thickness polymer pin–reinforced foam core sandwich (FCS) panels are new type of composite sandwich structure as the foam core of this structure was reinforced with cylindrical polymer pins, which also rigidly connect the face sheets. These sandwich panels are made of glass fiber–reinforced polyester face sheets and closed‐cell polyurethane foam core with cylindrical polymer pins produced during fabrication process. The indentation and compression behavior of these sandwich panels were compared with common traditional sandwich panel, and it has been found that by reinforcing the foam core with cylindrical polymer pins, the indentation strength, energy absorption, and compression strength of the sandwich panels were improved significantly. The effect of diameter of polymer pins on indentation and compression behavior of both sandwich panels was studied and results showed that the diameter of polymer pins had a large influence on the compression and indentation behavior of through‐thickness polymer pin–reinforced FCS panel, and the effect of adding polymer pins to FCS panel on indentation behavior is similar to the effect of increasing the thickness of face sheet. The effect of strain rate on indentation behavior of FCS panel and through‐thickness polymer pin–reinforced FCS panel were studied, and results showed that both types of composite sandwich panels are strain rate dependent structure as by increasing strain rate, the indentation properties and energy absorption properties of these structures are increased. POLYM. COMPOS., 37:612–619, 2016. © 2014 Society of Plastics Engineers  相似文献   

3.
《Polymer Composites》2017,38(11):2603-2608
In this paper, the experimental behavior of grid cylindrical composite structures, which are used widely in engineering structures, under ballistic impact is investigated. For this purpose, some grid cylindrical composite specimens were manufactured by the filament winding process and perforated by projectile using the ballistic gas gun. Incident impact velocity and exit velocities of projectile were recorded in each test. The results show that the presence of the ribs prevents pervading of damaged area of one cell to its adjacent cells. The structure behaves differently against projectile with velocity near ballistic limit and higher velocities. The results demonstrated that, by getting close to the ribs location, ballistic limit velocity was increased. However, due to reduction in energy absorption mechanisms in grid composite structures which are impacted in higher velocity than ballistic limit, projectile was exited of grid samples at higher velocity than unstiffened composite shells. Also, investigation of delamination in composite shell and ribs, debonding between ribs and shell (or separation of ribs and shell), residual velocity of projectile, damaged area of the grid specimens and the effects of curvature in two different velocities are presented and the results are discussed. POLYM. COMPOS., 38:2603–2608, 2017. © 2015 Society of Plastics Engineers  相似文献   

4.
《Ceramics International》2022,48(24):36326-36335
This article investigated the structure of the laminated ceramics to improve the multiple ballistic performance of segmented ceramic composite armors. The multiple ballistic experiments were conducted with 5.8 mm caliber steel core bullets at the impact velocity of about 920 m/s. The experiments verified that two laminated SiC/BN structures (GLC and ULC) exhibit higher residual ballistic performances than the monolithic SiC structure (MC). Moreover, through damage evolution analysis, two laminated SiC/BN structures (GLC and ULC) exhibit less sensitivity to the multiple ballistic impacts damages, and possess more energy absorption mechanisms than the monolithic ceramics. The structure design of the laminated of ceramics is beneficial for improving the multiple ballistic performances of composite armors and reducing the crater deformation.  相似文献   

5.
Poly epoxy is a high performance room temperature cured epoxy system which provides excellent physical and mechanical properties. However, the effects of post curing of this resin system on the properties of different sandwich structures are unknown. This study aims to evaluate the effect of post curing (at 70°C for 2 hr) on the edgewise compressive and flexural strengths of a sandwich structure, constructed with Styrofoam and honeycomb as core materials and a plain weave carbon fabric as face sheet. Tested factors evaluated from edgewise compressive tests were as follows: peak load, compressive strength, and crash energy absorption of sandwich structures while core shear stress and bending stress of sandwich structures were determined and compared with flexural tests. It was observed that post curing affects significantly on the bending and compressive strengths of the sandwich structures. However, the data obtained for crash energy absorption suggested that the effect of post curing on the core shear strength and the total deflection was statistically insignificant. The matrix polymer was also inspected using dynamic‐mechanical thermal analysis to assess the changes in glass transition temperature and degree of conversion due to post cure. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
The interfacial adhesion characteristics between foam cores and faces affect much the structural integrity of foam core sandwich structures. The peel strength between the face plate and the foam core is one of the appropriate parameters for the interfacial characteristics of sandwich structures and its peel energy is also measured for the interfacial characterization. The peel strength is the first peak force per unit width of bondline required to produce progressive separation, and the peel energy is the amount of energy per unit bonding area associated with a crack opening. In this study, to improve the peel strength between the foam core and the face plate of foam core sandwich beams, the surfaces of foam core sandwich beams were resin-impregnated. Then the peel strength as well as peel energy of resin impregnated polyurethane foam core sandwich beams were measured by the cleavage peel test and compared with those of the same sandwich beams without surface resin impregnation on the foam surface.  相似文献   

7.
Ballistic performance of glass reinforced plastic (GRP) composite plates containing coarse sized sand filler was investigated as an attempt towards developing a low cost armored system. In all, 10 different types of plates from 4 to 12 layers of E‐glass chopped strand mat reinforced polyester resin containing 0, 10, and 20% of 600‐ to 700‐μm sized sand filler were tested. A smooth barrel gas gun was used to conduct high velocity tests in the range of 70–185 m/s. Results indicated higher ballistic performance for GRP plates with sand filler in terms of higher ballistic limits (velocity at which at least 50% of samples were partially or fully penetrated the target plates with zero residual velocity), particularly for plates with highest sand filler loadings. Energy absorption associated with these specimens also showed higher performance. Delamination was identified as dominant failure mode, in particular for thicker specimens with highest sand filler loading. Specific energy absorption per weight per unit area for the composite plates indicated diminishing effectiveness with increase in sand filler loading, thereby limiting its possible application to armored system for stationary objects only. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

8.
根据碳纤维平纹编织复合材料层板在高速冲击下的断裂形貌特征,基于能量守恒原理构建层板的能量解析模型。模型考虑弹体动能被层合板的剪切破坏、拉伸断裂、压缩变形、分层损伤以及冲击区运动等损伤模式吸收,最终得到常微分形式的能量平衡方程。方程的几何参数中剪切充塞孔深度由试验弹道极限速度及理论求解得到,裂纹长度和分层损伤区域通过弹道冲击试验测量获得。在验证模型准确性的基础上,研究表明层合板在中速冲击时纤维拉伸断裂损伤吸收最多的能量,而高速冲击时压缩变形成为主要的吸能方式。在整个冲击过程中,较大的分层损伤区域使得基体的能量吸收作用不可忽视。层合板在平头弹冲击下与圆头弹相比吸收了更多的能量。  相似文献   

9.
《Ceramics International》2022,48(18):26147-26167
The failure and fragmentation of monolithic bare alumina 99.5% ceramic target and energy dissipation of steel 4340 projectile have been studied in a series of ballistic experiments carried out, with the incidence velocities in a range, 122–290 m/s. The velocity drop and energy dissipation increased with incidence velocity for 10 mm thick target with damage zone extended upon the whole area of rear face at higher velocities. The ballistic results obtained with the 10 mm thick target have been compared with the ballistic performance of the 5 mm thick target used in a previous study to explore the effects of target thickness on the failure mechanism. A model for the residual velocity of projectile after perforation of the single layered ceramic target has been developed based on the Lambert Jonas model by using the experimental data available for 5 mm and 10 mm thick alumina 99.5% target against 10.9 mm projectile. The residual velocities and damage patterns were reproduced with a reasonable amount of accuracy by a three-dimensional finite element model developed on commercial ABAQUS/CAE. The effect of obliquity and projectile diameter to target thickness ratio (D/T) on ballistic performance has been determined by the numerical simulation model with impact velocity in a range of 300–500 m/s. A spatial variation of ejected fragments velocity at different time steps was plotted to develop a velocity profile for the ceramic fragments coming out of the target. A semi-empirical model has been proposed for residual velocity after perforation of a monolithic ceramic target, relating to the incidence velocity and projectile diameter to target thickness ratio. The monolithic ceramic targets have been investigated for a comparative assessment of energy dissipation by the ceramic layer to eventually design an efficient front layer of a ceramic based composite armour in future studies.  相似文献   

10.
双轴向经编针织复合材料的弹道侵彻破坏   总被引:2,自引:2,他引:0  
通过真空辅助树脂传递模压法(VARTM)制造双轴向经编针织复合材料。在350~750m/s冲击速度范围内对复合材料作弹道冲击测试,得到弹体的入射速度、剩余速度及动能损失,弹体的剩余速度与入射速发近似满足线性关系,动能损失随弹速的增加呈现先上升后下降的状态。考察复合材料靶体的弹道侵彻破坏损伤形态,发现复合材料受弹面的破坏区域较子弹出射面的破坏区域小且破坏形态不同,由此揭示双轴向经编针织复合材料的弹道侵彻破坏模式与机理。  相似文献   

11.
为了研究高强玻璃纤维板抗高速破片侵彻性能,开展了弹道试验,探讨了破片入射速度、靶板厚度对高强玻璃纤维板抗侵彻性能的影响,通过对弹道试验结果分析,指出了高强玻璃纤维板的变形失效模式、吸能特性和抗侵彻机理。结果表明:破片在侵彻高强玻璃纤维板过程中可视为刚体,高强玻璃纤维板迎弹面破坏模式为纤维剪切破坏并伴随纤维反向喷出,迎弹面弹孔附近区域出现基体碎裂、纤维脱粘;背弹面破坏模式为纤维拉伸断裂,背弹面损伤区域远大于迎弹面损伤区域;高强玻璃纤维板单位面密度吸能随着破片侵彻速度增加呈线性增加,在试验速度范围内,得出了立方体破片侵彻不同厚度靶板入射速度与剩余速度、入射速度与靶板单位面密度吸能关系。  相似文献   

12.
《Polymer Composites》2017,38(4):646-656
This article investigates the response of composite sandwich panel with Nomex honeycomb core subjected to low‐velocity impact and compression after impact (CAI) by using the methods of experiments and numerical simulations. Low‐velocity impact of sandwich panels at five energy levels is carried out to research the damage resistance and tolerance. A failure model based on Hashin failure criterion is implemented to model the intralaminar damage behavior of laminated plies in the numerical simulation. The cohesive zone model is used to simulate the delamination damage between adjacent laminated plies. The honeycomb core behavior is defined as an elastic–plastic material. Good agreements, in terms of contact‐force histories, damage shapes, and indentation depths of the sandwich panels, are observed between the experimental and numerical results. During CAI analysis, the damaged panels present a phenomenon of quick crack propagation from impact indentation location to each unloaded side after the structural strength reached. It is found that the in‐plane compressive strength of damaged sandwich panels is almost 25–35% reduction than that of undamaged panels. POLYM. COMPOS., 38:646–656, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
The development and application of damage tolerance analysis of aircraft repair structures needs to keep pace with the growing of aircraft structural aging phenomena. The low‐velocity impact performance of scarf‐repaired structures is investigated experimentally in this article. The scarf‐repaired plates and the virgin plates were impacted using drop‐weight test machine at different impact energies. The time histories of impact force were recorded, and ultrasonic C‐scan technology was used to inspect the internal damage of the specimens. Permanent indentation, damage size, dissipated energy and the compression strength (strain) of these plates after impact are discussed contrastively. The results show that the impact resistance and compression behavior performances of prepreg scarf‐repaired plates are better than the virgin plates, while the performances of wet layup scarf repaired are the worst. POLYM. COMPOS., 37:1681–1694, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
Penetration and perforation behavior of glass fiber reinforced plastic (GFRP) plates containing 20% sand filler have been investigated via high velocity impact tests using sharp tipped (30°) projectile and quasi‐static perforation tests. Two size sand filler (75 and 600 μm) were used in 4‐, 8‐, and 14‐layered laminated composite plates to study sensitivity of filler size toward loading system. Composite plates were examined for perforation load rate at 5 mm/min and high‐velocity impact loading up to 220 m/s. Results indicated higher energy absorption for GFRP plates containing sand filler for both high‐velocity impact and quasi‐static perforation tests. Higher ballistic limits were recorded for specimens containing sand filler. The study showed clear role played by coarse‐sized sand filler as a secondary reinforcement in terms of higher energy absorption as compared with nonfilled and specimens containing fine‐sized fillers. The investigation successfully characterized behavior of quasi‐static test during penetration and perforation of the sharp‐tipped indenter as an aid for impact application studies. Residual frictional load in the specimens containing sand filler constituted considerable portion of load bearing during perforation in quasi‐static tests. Delaminations followed by fiber and matrix fracture were major failure mode in high‐velocity tests and the main energy absorbing mechanism in thick‐walled plates, whereas in quasi‐static tests the failures were more of matrix fracture and fiber sliding. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
The low‐velocity impact behavior of a continuous glass fiber/polypropylene composite was investigated. Optical microscopy and ultrasonic scanning were used to determine the impact‐induced damage. At low impact energy, the predominant damage mechanism observed was matrix cracking, while at high energy the damage mechanisms observed were delamination, plastic deformation, which produced a residual specimen curvature, and a small amount of fiber breakage at the edge of the indentation on the impacted face of the specimens. The impact load vs. time signals were recorded during impact and showed that the load corresponding to the onset of delamination was independent of the impact energy in the range tested. The load at which the onset of delamination occurred corresponded to the values obtained by performing a linear regression of the delaminated area, obtained by ultrasonic scanning, as a function of the impact force. Tensile and flexural tests performed on impacted specimens showed that the tensile and flexural residual strengths and the flexural modulus decreased with increasing incident impact energy, while the post‐impact residual tensile modulus remained constant. The dynamic interlaminar fracture toughness was evaluated from the critical dynamic (impact) strain energy release rate of specimens with a delamination simulated by an embedded insert. The results are compared with the interlaminar fracture toughness values obtained during subcritical steady crack growth.  相似文献   

16.
The fracture properties and impact response of a series of aluminum foam sandwich structures with the glass fiber–reinforced polypropylene-based fiber-metal laminate (FML) skins have been studied. Initially, the manufacturing process for producing the FML skins was optimized to obtain a strong bond between the composite plies and the aluminum layers. The degree of adhesion between the composite plies and the aluminum was characterized by conducting single cantilever beam tests. Here, it was found that the composites could be successfully bonded to the aluminum using a simple short stamping procedure. A detailed examination of the fracture surfaces indicated that crack propagation occurred within the composite ply in the fiber-metal laminates and along the composite-aluminum foam interface in the sandwich structures. The low velocity impact response of the FMLs and the sandwich structures was investigated using an instrumented drop-weight impact tower and a laser-Doppler velocimeter. The energy absorption characteristics of the sandwich structures were investigated along with the failure processes. Finally, a series of tensile tests on the damaged FMLs and thermoplastic sandwich structures showed that both systems offer promising residual load-bearing properties. Here, shear failure in the aluminum foam was observed in the sandwich structures, indicative of a strong bond between the FML skins and the aluminum core. Polym. Compos. 25:499–509, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
Two different non‐crimp glass fabrics with a polyester resin were used to produce laminated plates that were subjected to low velocity impact testing using three impact energy levels. The plates were immersed in water at 65°C for up to 24 months. The effectiveness of a traditional water coupled and an air‐coupled ultrasonic C‐Scan system was assessed in terms of damage size evaluation at various time intervals. The conditioned impacted plates were retested statically in compression to determine the residual strength for evaluation of damage tolerance. Weight change measurements revealed an initial increase due to water diffusion, followed by an extended decrease due to matrix dissolution at long‐term immersion times. The use of water coupled pulse‐echo ultrasonics proved ineffective after long‐term water immersion as damaged areas became ultrasound‐invisible. The contrast between impact damaged areas and water diffused areas was restored with the air‐coupled C‐scan. The macroscopic damage size was not affected by the long‐term water immersion and the overall weight change while the residual compression strength was seemed to be dependent on the time of immersion and the size of the pre‐existing impact damage. Calibrating the air‐coupled system to a dry condition specimen, a good qualitative and quantitative indication of the degraded state of water immersed plates was obtained. This monitoring system for the degradation process seems to be very promising. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

18.
The effect of molding parameters on material distribution and mechanical properties of co‐injection molded plates has been studied using experimental design. The plates were molded with a polyamide 6 (PA 6) as skin and a 20% glass fiber‐reinforced polybutyleneterephtalate (PBTP) as core. Five molding parameters—injection velocity, mold temperature, skin and core temperature, and core content—were varied in two levels. The statistical analysis of the results showed that three parameters—Injection velocity, core temperature, and core content—were the most significant in affecting skin/core distribution. A high core temperature was the most significant variable promoting a constant core thickness, while core content was the most significant factor influencing a breakthrough of the core. Mechanical properties, such as flexural and impact strength showed a high correlation with the skin/core distribution. The slight increase in falling weight impact strength of the sandwich molded plates, compared to similar plates molded from PBTP only, could be explained from the failure process, which initiates in the brittle core and propagates through the ductile skins.  相似文献   

19.
In this work the moisture absorption capability, compressive properties, collapse modes of various types of composite sandwich structures are reported. The tested sandwich structures were constructed with varieties of hybridized skin materials and different compositions of the core materials. The moisture absorption, Flatwise compression and Edgewise compression tests are conducted for core as well as sandwich structures. Comparisons of results have been between the hybridized and non-hybridized sandwich structures. Two modes of collapse were noticed in the Edgewise compressive test, one of which being progressive end-crushing of the sandwich structure featured by significant crash energy absorption. This feature was highly desired for the parts of transportation vehicles. Microscopic analysis has been carried out to know the nature of failure under compressive loads. It has been observed that with increasing the debonding strength of the core–face interface, the failure mode changes from unstable collapse mode stable progressive crushing.  相似文献   

20.
Ballistic impact performance of aramid fiber fabric‐epoxy and aramid fiber fabric‐polypropylene (PP)‐based composite laminates has been studied against 7.62 mm armor piercing projectiles. Twaron® was used as aramid fiber fabric in the composites. Role of matrix on the damage pattern has been investigated by impacting the composites of different thickness with projectiles having different strike velocity (SV). Ballistic limit (BL) for each composite has been estimated through correlation of SV and residual velocity (RV) of the projectile by usual V50 method. Ballistic limit was found to vary linearly with composite laminate thickness. Twaron®‐PP composites exhibited higher ballistic limit compared toequivalent thickness of Twaron®‐epoxy composites. Epoxy‐based composites exhibited localized damage mode compared to a global mode of failure in PP‐based composites. Scanning electron microscopy revealed that fibers in Twaron®‐epoxy composites failed largely by shear while tensile mode of failure was observed for Twaron®–PP composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号