首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.  相似文献   

2.
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 μM) than hACE2 receptor (1.12 μM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin’s interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2’s entry into human cells.  相似文献   

3.
The current pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While this respiratory virus only causes mild symptoms in younger healthy individuals, elderly people and those with cardiovascular diseases such as systemic hypertension are susceptible to developing severe conditions that can be fatal. SARS-CoV-2 infection is also associated with an increased incidence of cardiovascular diseases such as myocardial injury, acute coronary syndrome, and thromboembolism. Understanding the mechanisms of the effects of this virus on the cardiovascular system should thus help develop therapeutic strategies to reduce the mortality and morbidity associated with SARS-CoV-2 infection. Since this virus causes severe and fatal conditions in older individuals with cardiovascular comorbidities, effective therapies targeting specific populations will likely contribute to ending this pandemic. In this review article, the effects of various viruses—including other coronaviruses, influenza, dengue, and human immunodeficiency virus—on the cardiovascular system are described to help provide molecular mechanisms of pathologies associated with SARS-CoV-2 infection and COVID-19. The goal is to provide mechanistic information from the biology of other viral infections in relation to cardiovascular pathologies for the purpose of developing improved vaccines and therapeutic agents effective in preventing and/or treating the acute and long-term consequences of SARS-CoV-2 and COVID-19.  相似文献   

4.
Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer’s disease (AD), the major form of dementia, β-amyloid (Aβ) levels in the blood are increased; however, the impact of elevated Aβ levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aβ1-42, but not Aβ1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aβ1-42. Furthermore, Aβ1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aβ1-42 show that the clearance of Aβ1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aβ antibody. In conclusion, these findings suggest that the binding of Aβ1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aβ1-42 in the blood is beneficial to the fight against COVID-19 and AD.  相似文献   

5.
This study was undertaken to evaluate the connexin hemichannel blocker tonabersat for the inhibition of inflammasome activation and use as a potential treatment for diabetic retinopathy. Human retinal pigment epithelial cells (ARPE-19) were stimulated with hyperglycemia and the inflammatory cytokines IL-1β and TNFα in order to mimic diabetic retinopathy molecular signs in vitro. Immunohistochemistry was used to evaluate the effect of tonabersat treatment on NLRP3, NLRP1, and cleaved caspase-1 expression and distribution. A Luminex cytokine release assay was performed to determine whether tonabersat affected proinflammatory cytokine release. NLRP1 was not activated in ARPE-19 cells, and IL-18 was not produced under disease conditions. However, NLRP3 and cleaved caspase-1 complex formation increased with hyperglycemia and cytokine challenge but was inhibited by tonabersat treatment. It also prevented the release of proinflammatory cytokines IL-1β, VEGF, and IL-6. Tonabersat therefore has the potential to reduce inflammasome-mediated inflammation in diabetic retinopathy.  相似文献   

6.
Among patients suffering from coronavirus disease 2019 (COVID-19) syndrome, one of the worst possible scenarios is represented by the critical lung damage caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced cytokine storm, responsible for a potentially very dangerous hyperinflammatory condition. Within such a context, interleukin-6 (IL-6) plays a key pathogenic role, thus being a suitable therapeutic target. Indeed, the IL-6-receptor antagonist tocilizumab, already approved for treatment of refractory rheumatoid arthritis, is often used to treat patients with severe COVID-19 symptoms and lung involvement. Therefore, the aim of this review article is to focus on the rationale of tocilizumab utilization in the SARS-CoV-2-triggered cytokine storm, as well as to discuss current evidence and future perspectives, especially with regard to ongoing trials referring to the evaluation of tocilizumab’s therapeutic effects in patients with life-threatening SARS-CoV-2 infection.  相似文献   

7.
A complete understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) physiopathology and related histopathologic lesions is necessary to improve treatment and outcome of coronavirus disease 2019 (COVID-19) patients. Many studies have focused on autopsy findings in COVID-19-related deaths to try and define any possible specific pattern. Histopathologic alterations are principally found within lungs and blood vessels, and these abnormalities also seem to have the highest clinical impact. Nevertheless, many of the morphological data collected so far are non-specific, fickle, and possibly associated with other co-existing factors. The aim of this minireview is to describe the main histopathological features related to COVID-19 and the mechanism known as “cytokine storm”.  相似文献   

8.
Dental calculus (DC) is a common deposit in periodontitis patients. We have previously shown that DC contains both microbial components and calcium phosphate crystals that induce an osteoclastogenic cytokine IL-1β via the NLRP3 inflammasome in macrophages. In this study, we examined the effects of cytokines produced by mouse macrophages stimulated with DC on osteoclastogenesis. The culture supernatants from wild-type (WT) mouse macrophages stimulated with DC accelerated osteoclastogenesis in RANKL-primed mouse bone marrow macrophages (BMMs), but inhibited osteoclastogenesis in RANKL-primed RAW-D cells. WT, but not NLRP3-deficient, mouse macrophages stimulated with DC produced IL-1β and IL-18 in a dose-dependent manner, indicating the NLRP3 inflammasome-dependent production of IL-1β and IL-18. Both WT and NLRP3-deficient mouse macrophages stimulated with DC produced IL-10, indicating the NLRP3 inflammasome-independent production of IL-10. Recombinant IL-1β accelerated osteoclastogenesis in both RANKL-primed BMMs and RAW-D cells, whereas recombinant IL-18 and IL-10 inhibited osteoclastogenesis. These results indicate that DC induces osteoclastogenic IL-1β in an NLRP3 inflammasome-dependent manner and anti-osteogenic IL-18 and IL-10 dependently and independently of the NLRP3 inflammasome, respectively. DC may promote alveolar bone resorption via IL-1β induction in periodontitis patients, but suppress resorption via IL-18 and IL-10 induction in some circumstances.  相似文献   

9.
In late 2019, a new member of the Coronaviridae family, officially designated as “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.  相似文献   

10.
The virus responsible for the current COVID-19 pandemic is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a new virus with high infectivity and moderate mortality. The major clinical manifestation of COVID-19 is interstitial pneumonia, which may progress to acute respiratory distress syndrome (ARDS). However, the disease causes a potent systemic hyperin-flammatory response, i.e., a cytokine storm or macrophage activation syndrome (MAS), which is associated with thrombotic complications. The complexity of the disease requires appropriate intensive treatment. One of promising treatment is statin administration, these being 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that exert pleiotropic anti-inflammatory effects. Recent studies indicate that statin therapy is associated with decreased mortality in COVID-19, which may be caused by direct and indirect mechanisms. According to literature data, statins can limit SARS-CoV-2 cell entry and replication by inhibiting the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). The cytokine storm can be ameliorated by lowering serum IL-6 levels; this can be achieved by inhibiting Toll-like receptor 4 (TLR4) and modulating macrophage activity. Statins can also reduce the complications of COVID-19, such as thrombosis and pulmonary fibrosis, by reducing serum PAI-1 levels, attenuating TGF-β and VEGF in lung tissue, and improving endothelial function. Despite these benefits, statin therapy may have side effects that should be considered, such as elevated creatinine kinase (CK), liver enzyme and serum glucose levels, which are already elevated in severe COVID-19 infection. The present study analyzes the latest findings regarding the benefits and limitations of statin therapy in patients with COVID-19.  相似文献   

11.
Inhaled nebulized interferon (IFN)-α and IFN-β have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5′-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3′-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 μM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.  相似文献   

12.
The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.  相似文献   

13.
A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04–5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.  相似文献   

14.
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality across the world, with no current effective treatments available. Recent studies suggest the possibility of a cytokine storm associated with severe COVID-19, similar to the biochemical profile seen in hemophagocytic lymphohistiocytosis (HLH), raising the question of possible benefits that could be derived from targeted immunosuppression in severe COVID-19 patients. We reviewed the literature regarding the diagnosis and features of HLH, particularly secondary HLH, and aimed to identify gaps in the literature to truly clarify the existence of a COVID-19 associated HLH. Diagnostic criteria such as HScore or HLH-2004 may have suboptimal performance in identifying COVID-19 HLH-like presentations, and criteria such as soluble CD163, NK cell activity, or other novel biomarkers may be more useful in identifying this entity.  相似文献   

15.
Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-β is intimately involved in the fibrogenic process. When activated, TGF-β promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-β1 tissue expression) involved in the TGF-β1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-β1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-β pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-β inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.  相似文献   

16.
SARS-CoV-2 infection can cause cytokine storm and may overshoot immunity in humans; however, it remains to be determined whether virus-induced soluble mediators from infected cells are carried by exosomes as vehicles to distant organs and cause tissue damage in COVID-19 patients. We took an unbiased proteomic approach for analyses of exosomes isolated from plasma of healthy volunteers and COVID-19 patients. Our results revealed that tenascin-C (TNC) and fibrinogen-β (FGB) are highly abundant in exosomes from COVID-19 patients’ plasma compared with that of healthy normal controls. Since TNC and FGB stimulate pro-inflammatory cytokines via the Nuclear factor-κB (NF-κB) pathway, we examined the status of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C–C motif chemokine ligand 5 (CCL5) expression upon exposure of hepatocytes to exosomes from COVID-19 patients and observed significant increase compared with that from healthy subjects. Together, our results demonstrate that TNC and FGB are transported through plasma exosomes and potentially trigger pro-inflammatory cytokine signaling in cells of distant organ.  相似文献   

17.
Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1β (IL-1β), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1β is significantly elevated by astrocytic expression. Maturation of IL-1β to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1β expression in spinal astrocytes. The release of mature IL-1β can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.  相似文献   

18.
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.  相似文献   

19.
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global challenge. Currently, there is some information on the consequences of COVID-19 infection in multiple sclerosis (MS) patients, as it is a newly discovered coronavirus, but its far-reaching effects on participation in neurodegenerative diseases seem to be significant. Recent cases reports showed that SARS-CoV-2 may be responsible for initiating the demyelination process in people who previously had no symptoms associated with any nervous system disorders. It is presently known that infection of SARS-CoV-2 evokes cytokine storm syndrome, which may be one of the factors leading to the acute cerebrovascular disease. One of the substantial problems is the coexistence of cerebrovascular disease and MS in an individual’s life span. Epidemiological studies showed an enhanced risk of death rate from vascular disabilities in MS patients of approximately 30%. It has been demonstrated that patients with severe SARS-CoV-2 infection usually show increased levels of D-dimer, fibrinogen, C-reactive protein (CRP), and overactivation of blood platelets, which are essential elements of prothrombotic events. In this review, the latest knowledge gathered during an ongoing pandemic of SARS-CoV-2 infection on the neurodegeneration processes in MS is discussed.  相似文献   

20.
Alzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer’s disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer’s disease. In summary, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer’s disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号