首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This work is an attempt to estimate the electrical properties of SiO2 thin films by recording and analyzing their infrared transmission spectra. In order to study a big variety of films having different infrared and electrical properties, we studied SiO2 films prepared by low pressure chemical vapor deposition (LPCVD) from SiH4 + O2 mixtures at 425 °C and annealed at 750 °C and 950 °C for 30 min. In addition thermally grown gate quality SiO2 films of similar thickness were studied in order to compare their infrared and electrical properties with the LPCVD oxides. It was found that all studied SiO2 films have two groups of Si–O–Si bridges. The first group corresponds to bridges located in the bulk of the film and far away from the interfaces, the grain boundaries and defects and the second group corresponds to all other bridges located near the interfaces, the grain boundaries and defects. The relative population of the bulk over the boundary bridges was found equal to 0.60 for the LPCVD film after deposition and increased to 4.0 for the LPCVD films after annealing at 950 °C. Thermally grown SiO2 films at 950 °C were found to have a relative population of Si–O–Si bridges equal to 3.9. The interface trap density of the LPCVD film after deposition was found equal to 5.47 × 1012 eV−1 cm−2 and decreases to 6.50 × 1010 eV−1 cm−2 after annealing at 950 °C for 30 min. The interface trap density of the thermally grown film was found equal to 1.27 × 1011 eV−1 cm−2 showing that films with similar Si–O–Si bridge populations calculated from the FTIR analysis have similar interface trap densities.  相似文献   

2.
Results of a study of electrically active defects induced in Sb-doped Ge crystals by implantations of hydrogen and helium ions (protons and alpha particles) with energies in the range from 500 keV to 1 MeV and doses in the range 1×1010–1×1014 cm−2 are presented in this work. Transformations of the defects upon post-implantation isochronal anneals in the temperature range 50–350 °C have also been studied. The results have been obtained by means of capacitance–voltage (CV) measurements and deep-level transient spectroscopy (DLTS).It was found from an analysis of DLTS spectra that low doses (<5×1010 cm−2) of H and He ion implantations resulted in the introduction of damage similar to that observed after MeV electron irradiation. The Sb–vacancy complex was the dominant deep-level defect in the lightly implanted samples. After implantations with doses higher than 5×1010 cm−2 peaks due to more complex defects were observed in the DLTS spectra. Implantations with heavy (5×1013 cm−2) doses of both H and He ions caused the formation of a sub-surface layer with a high (up to 1×1017 cm−3) concentration of donors. These donors were eliminated by anneals at temperatures in the range 100–200 °C. Heat treatments of the heavy proton-implanted Ge samples in the temperature range 250–300 °C resulted in the formation of shallow hydrogen-related donors, the concentration of which was the highest in a region close to the projected depth of implanted protons. The maximum peak concentration of the H-related donors was higher than 1×1015 cm−3 for a proton implantation dose of 1×1014 cm−2.  相似文献   

3.
Metal–oxide–semiconductor (MOS) capacitors based on HfO2 gate stacks with Al and TiN gates are compared to study the effect of the gate electrode material to the properties of insulator–semiconductor interface. The structures under study were shown to contain interface trap densities of around 2 × 1011 cm−2 eV−1 for Al gate and up to 5.5 × 1012 cm−2 eV−1 for TiN gate. The peak in the surface state distribution was found at 0.19 eV above the valence band edge for Al electrode. The respective capture cross-section is 6 × 10−17 cm2 at 200 K.The charge injection experiments have revealed the presence of hole traps inside the dielectric layer. The Al-gate structure contains traps with effective capture cross-section of 1 × 10−20 cm2, and there are two types of traps in the TiN-gate structure with cross-sections of 3.5 × 10−19 and 1 × 10−20 cm2. Trap concentration in the structure with Al electrode was considerably lower than in the structure with TiN electrode.  相似文献   

4.
ZrO2 thin films with a smooth surface were synthesized on silicon by atomic vapor deposition™ using Zr[OC(CH3)3]4 as precursor. The maximum growth rate (7 nm min−1) and strongest crystalline phase were obtained at 400 °C. The increase of the deposition temperature reduced the deposition rate to 0.5 nm min−1 and changed the crystalline ZrO2 phase from cubic/tetragonal to monoclinic. These films showed no enhancement of the dominating monoclinic phase by annealing. The values of the dielectric constant (up to 32) and leakage current density (down to 1.2×10−6 A cm−2 at 1×106 V cm−1) varied depending on the deposition temperature and film thickness. The midgap density of interface states was Nit=5×1011 eV−1 cm−2. The leakage current and the density of interface states were lowered by the annealing to 10−7 A cm−2 at 1×106 V cm−1 and to 1010 eV−1 cm−2, respectively. However, this also led to a decrease of the dielectric constant.  相似文献   

5.
The physical and electrical properties of self-assembled mesoporous silica thin films with defined 2D hexagonal porous architectures have been evaluated in the following study. Self-assembled mesoporous silica thin (MPS) films have been prepared by evaporation-induced self-assembly (EISA) methods using the triblock copolymer (C2H2)106(C3H3)70(C2H2)106 (Pluronic F127®). The MPS films exhibit remarkably low level leakage currents (1 × 10−8–1 × 10−7 A/cm2 at 1 MV/cm1) and high breakdown voltages (>3 MV/cm1). The films have dielectric constants of approximately 2.3, low dielectric loss factors of 0.01–0.03 and exhibit negligible frequency dispersion of dielectric constant between 100 kHz and 1 MHz. The effect of physisorbed water (humidity) upon the electrical properties of the films is also investigated using capacitance–voltage techniques.  相似文献   

6.
Metal-oxide-semiconductor capacitors based on HfO2 gate stack with different metal and metal compound gates (Al, TiN, NiSi and NiAlN) are compared to study the effect of the gate electrode material on the trap density at the insulator–semiconductor interface.CV and Gω measurements were made in the frequency range from 1 kHz to 1 MHz in the temperature range 180–300 K. From the maximum of the plot G/ω vs. ln(ω) the density of interface states was calculated, and from its position on the frequency axis the trap cross-section was found. Reducing temperature makes it possible to decrease leakage current through the dielectric and to investigate the states located closer to the band edge.The structures under study were shown to contain significant interface trap densities located near the valence band edge (around 2×1011 cm−2eV−1 for Al and up to (3.5–5.5)×1012 cm−2 eV−1 for other gate materials). The peak in the surface state distribution is situated at 0.18 eV above the valence band edge for Al electrode. The capture cross-section is 5.8×10−17 cm2 at 200 K for Al–HfO2–Si structure.  相似文献   

7.
We report measured evolutions of the optical band gap, refractive index and relative dielectric constant of TiO2 films obtained by electron beam gun evaporation and annealed in an oxygen environment. A negative shift of the flat band voltage with increasing annealing temperatures, for any film thickness, is observed. A dramatic reduction of the leakage current by about four orders of magnitude to 5×10−6 A cm−2 (at 1 MV cm−1) after 700°C and 60 min annealing is found for films thinner than 15 nm. The basic carrier transport mechanisms at different ranges of applied voltage such as hopping, space charge limited current and Fowler–Nordheim is established. An equivalent SiO2 thickness in order of 3.5 nm is demonstrated.  相似文献   

8.
Dependence of oxygen partial pressures on structural and electrical characteristics of HfAlO (Hf:Al=1:1) high-k gate dielectric ultra-thin films grown on the compressively strained Si83Ge17 by pulsed-laser deposition were investigated. The microstructure and the interfacial structure of the HfAlO thin films grown under different oxygen partial pressures were studied by transmission electron microscopy, and the their electrical properties were characterized by capacitance–voltage (CV) and conductance–voltage measurements. Dependence of interfacial layer thickness and CV characteristics of the HfAlO films on the growth of oxygen pressure was revealed. With an optimized oxygen partial pressure, an HfAlO film with an effective dielectric constant of 16 and a low interface state density of 2.1×1010 cm−2 eV−1 was obtained.  相似文献   

9.
Aluminum nitride films were deposited, at 200 °C, on silicon substrates by RF sputtering. Effects of rapid thermal annealing on these films, at temperatures ranging from 400 to 1000 °C, have been studied. Fourier transform infrared spectroscopy (FTIR) revealed that the characteristic absorption band of Al–N, around 684 cm−1, became prominent with increased annealing temperature. X-ray diffraction (XRD) patterns exhibited a better, c-axis, (0 0 2) oriented AlN films at 800 °C. Significant rise in surface roughness, from 2.1 to 3.68 nm, was observed as annealing temperatures increased. Apart from these observations, micro-cracks were observed at 1000 °C. Insulator charge density increased from 2×1011 to 7.7×1011 cm−2 at higher temperatures, whereas, the interface charge density was found minimum, 3.2×1011 eV−1cm−2, at 600 °C.  相似文献   

10.
Using hydrofluoric acid (HF) as catalyst, nanoporous SiO2 thin film was synthesized by sol–gel method. By scanning electron microscopy, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis, ellipsometry, capacitance–voltage and current–voltage measurements, the effects of annealing on film properties were discussed in detail. The introduction of HF results in the less polarizability, the preferable microstructures and the improved thermal stability of the nanoporous silica films. After thermal annealing at 450 °C, the crack-free films with strong hydrophobicity, ultra-low dielectric constant of 1.65, porosity of 78%, and leakage current density of 1.3 × 10−8 A cm−2 were obtained.  相似文献   

11.
In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from −2.23 to −1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm−2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being −2.96 V and 1.64×1012 cm−2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the CV plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties.  相似文献   

12.
In this paper, HfO2 dielectric films with blocking layers (BL) of Al2O3 were deposited on high resistivity silicon-on-insulator (HRSOI), and the interfacial and electrical properties are reported. High-resolution transmission electron microscopy (HRTEM) indicated that BL could thin the interfacial layer, keep the interface smooth, and retain HfO2 amorphous after annealing. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed that BL weaken Si diffusion and suppressed the further growth of HfSiO. Electrical measurements indicated that there was no hysteresis was observed in capacitance–voltage curves, and Flatband shift and interface state density is 0.05 V and −1.3 × 1012 cm−2, respectively.  相似文献   

13.
Strontium tantalate (STO) films were grown by liquid-delivery (LD) metalorganic chemical vapor deposition (MOCVD) using Sr[Ta(OEt)5(OC2H4OMe)]2 as precursor. The deposition of the films was investigated in dependence on process conditions, such as substrate temperature, pressure, and concentration of the precursor. The growth rate varied from 4 to 300 nm/h and the highest rates were observed at the higher process temperature, pressure, and concentration of the precursor. The films were annealed at temperatures ranging from 600 to 1000 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and ellipsometry indicated that the as-deposited and the annealed films were uniform and amorphous and a thin (>2 nm) SiO2 interlayer was found. Crystallization took place at temperatures of about 1000 °C. Annealing at moderate temperatures was found to improve the electrical characteristics despite different film thickness (effective dielectric constant up to 40, the leakage current up to 6×10−8 A/cm2, and lowest midgap density value of 8×1010 eV−1 cm−2) and did not change the uniformity of the STO films, while annealing at higher temperatures (1000 °C) created voids in the film and enhanced the SiO2 interlayer thickness, which made the electrical properties worse. Thus, annealing temperatures of about 800 °C resulted in an optimum of the electrical properties of the STO films for gate dielectric applications.  相似文献   

14.
ZrAlO thin films were prepared by the pyrosol process. Four different cases were considered taking as basis a solution of 0.025 M zirconium acetylacetonate (ZrAAc) and 5 at% of aluminum acetylacetonate (AlAAc) dissolved in pure methanol. Films of case A, were deposited with the mentioned solution and subjected to rapid thermal annealing (RTA). For case B, a small volume of water was added to start solution. Case C, were similar samples of case B, but with a post-deposition RTA. Case D, were Si/Al2O3/ZrAlO/Al stacks with post-deposition RTA, using water in the start solution. XPS profiles show that the relative chemical composition of deposited materials is affected by the volume of water added (Vw). The aluminum concentration in the films acquires values as high as or higher than zirconium concentration for increasing Vw. All the prepared samples were amorphous as indicated by the X-ray diffraction (XRD) spectra, even for large integration times. Current–voltage (IV) and capacitance measurements were carried out in metal–insulator–metal (MIM) devices (Corning-glass/TCO/ZrAlO/Al) and IV and simultaneous capacitance–voltage (CV) measurements were performed in metal–oxide–semiconductor (MOS) devices (Si/ZrAlO/Al and Si/Al2O3/ZrAlO/Al). Leakage currents of the order of 10−4 A/cm2, were typically obtained in MIM devices, whereas for some MOS devices, leakage currents of the order of 10−7 A/cm2 were obtained. Dielectric constant (k) values of the order of 24 were calculated for MIM devices and k values ranging from 12.5 up to 17 were calculated for MOS devices.  相似文献   

15.
Deep level defects in both p+/n junctions and n-type Schottky GaN diodes are studied using the Fourier transform deep level transient spectroscopy. An electron trap level was detected in the range of energies at EcEt=0.23–0.27 eV with a capture cross-section of the order of 10−19–10−16 cm2 for both the p+/n and n-type Schottky GaN diodes. For one set of p+/n diodes with a structure of Au/Pt/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au and the n-type Schottky diodes, two other common electron traps are found at energy positions, EcEt=0.53–0.56 eV and 0.79–0.82 eV. In addition, an electron trap level with energy position at EcEt=1.07 eV and a capture cross-section of σn=1.6×10−13 cm2 are detected for the n-type Schottky diodes. This trap level has not been previously reported in the literature. For the other set of p+/n diodes with a structure of Au/Ni/p+–GaN/n–GaN/n+–GaN/Ti/Al/Pd/Au, a prominent minority carrier (hole) trap level was also identified with an energy position at EtEv=0.85 eV and a capture cross-section of σn=8.1×10−14 cm2. The 0.56 eV electron trap level observed in n-type Schottky diode and the 0.23 eV electron trap level detected in the p+/n diode with Ni/Au contact are attributed to the extended defects based on the observation of logarithmic capture kinetics.  相似文献   

16.
The paper focuses on the study of charge trapping processes in high-k MOS structures at cryogenic temperatures. It was shown, that there is extremely strong trapping in shallow electron and hole traps, localized in the high-k dielectrics. Concentration of shallow electron traps is as much as 1013 cm−2, while abnormal small capture cross-sections (4.5–8 × 10−24 cm2 for different samples, accordingly) suggests localization of shallow emitting electron traps in transition layer “high-k dielectric/Si”, more, than at the interface. Shallow hole traps with concentration near 1012 cm−2 are separated from silicon valence band with energy barrier in the range 10–39 meV for different samples.  相似文献   

17.
This paper presents the Monte Carlo studies of inversion mobility in Ge MOSFETs covering a wide range of bulk-impurity concentrations (1014 cm−3–1017 cm−3), and substrate bias (0–10 V). Carrier mobilities in Ge MOSFETs have obviously increased compared with those in Si MOSFETs. At low effective field, both electron and hole mobilities have increased over 100%; while at high effective field the increase is reduced due to the effect of surface roughness. Similar to Si MOSFETs, the carrier effective mobilities in Ge MOSFETs also have a universal behavior. The universality of both electron and hole mobilities holds up to a bulk-impurity concentration of 1017 cm−3. On substrates with higher bulk-impurity concentrations, the carrier effective mobilities significantly deviate from the universal curves under low effective field because of Coulomb scattering by the bulk impurity.  相似文献   

18.
In this study, investigation on Au/Ti/Al ohmic contact to n-type 4H–SiC and its thermal stability are reported. Specific contact resistances (SCRs) in the range of 10−4–10−6 Ω cm2, and the best SCR as low as 2.8 × 10−6 Ω cm2 has been generally achieved after rapid thermal annealing in Ar for 5 min at 800 °C and above. About 1–2 order(s) of magnitude improvement in SCR as compared to those Al/Ti series ohmic systems in n-SiC reported in literature is obtained. XRD analysis shows that the low resistance contact would be attributed to the formation of titanium silicides (TiSi2 and TiSi) and Ti3SiC2 at the metal/n-SiC interface after thermal annealing. The Au/Ti/Al ohmic contact is thermally stable during thermal aging treatment in Ar at temperature in the 100–500 °C range for 20 h.  相似文献   

19.
SiO2 thin films, with thickness ranging between approximately 13 and 95 nm, have been thermally grown at 950°C in dry oxygen and chemically vapor deposited at low pressures (0.3 Torr) by decomposition of tetraethylorthosilicate (TEOS) at 710°C, on Si (100) substrates. Dispersion analysis was performed on Fourier transform infrared (FTIR) transmission spectra of these films within the range 900–1400 cm−1. It was found that the spectra were best described within this range, by four Lorentz oscillators located near 1060, 1089, 1165 and 1220 cm−1 almost independent of film thickness. The polarization of the oscillators (proportional to their strength) was found to increase slightly, and their widths to decrease, with film thickness. From the study of the FTIR spectra obtained at room temperature, it was suggested that at this temperature, a considerable number of Si–O–Si angles in these SiO2 films are distributed in a way expected at higher temperatures and that the distribution of the Si–O–Si angles depends on the thermal history of the film and the method of growth.  相似文献   

20.
Two novel and air-stable cyanated tetracene derivatives, 5-cyanotetracene (1CT) and 5,11-dicyanotetracene (2CT), were synthesized as high-performance organic semiconductors. The stability of 2CT was evaluated by NMR and the electrochemical property was investigated by cyclic voltammetry (CV) and UV–vis spectrum. The reorganization energy of 2CT predicted by UB3LYP/6-311g(d,p) is 0.0881 eV, which is the lowest among existing compounds. The X-ray crystallographic analysis revealed that the 2CT single crystal has a promising face-to-face packing with a relative short intermolecular distance of 3.403 Å. Based on the theoretical model we previously developed, the calculated hole mobilities of these air-stable cyanated tetracene derivatives in ab plane are 2.9 cm2 V−1 s−1 for 1CT and 2.2 cm2 V−1 s−1 for 2CT, respectively. These oxygen-resisted organics may offer potential to fabricate the flexible electronics under air conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号