首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment nitrification and denitrification in a Lake Superior estuary   总被引:1,自引:0,他引:1  
Inorganic nitrogen (N) transformations and removal in aquatic sediments are microbially mediated, and rates influence N-transport. In this study we related physicochemical properties of a large Great Lakes embayment, the St. Louis River Estuary (SLRE) of western Lake Superior, to sediment N-transformation rates. We tested for associations among rates and N-inputs, vegetation biomass, and temperature. We measured rates of nitrification (NIT), unamended base denitrification (DeNIT), and potential denitrification [denitrifying enzyme activity (DEA)] in 2011 and 2012 across spatial and depth zones. In vegetated habitats, NIT and DeNIT rates were highest in deep (ca. 2 m) water (249 and 2111 mg N m− 2 d− 1, respectively) and in the upper and lower reaches of the SLRE (> 126 and 274 mg N m− 2 d− 1, respectively). Rates of DEA were similar among zones. In 2012, NIT, DeNIT, and DEA rates were highest in July, May, and June, respectively. System-wide, we observed highest NIT (223 and 287 mg N m− 2 d− 1) and DeNIT (77 and 64 mg N m− 2 d− 1) rates in the harbor and from deep water, respectively. Amendment with NO3 enhanced DeNIT rates more than carbon amendment; however, DeNIT and NIT rates were inversely related, suggesting the two processes are decoupled in sediments. Average proportion of N2O released during DEA (23–54%) was greater than from DeNIT (0–41%). Nitrogen cycling rates were spatially and temporally variable, but we modeled how alterations to water depth and N-inputs may impact DeNIT rates. A large flood occurred in 2012 which temporarily altered water chemistry and sediment nitrogen cycling.  相似文献   

2.
In southern Lake Malawi, seasonal pelagic chlorophyll means were 1.0 ± 0.3 μg L−1 in the deep mixing season (DMS) (May–August), 0.8 ± 0.3 μg L−1 in the dry stratified season (DSS) (September to November) and 0.7 ± 0.3 μg L−1 in the wet stratified season (WSS) (December to April). Despite the low variability in chlorophyll, there was a wide range in chlorophyll specific photosynthetic activity. The photosynthetic parameters, Pbm (the light saturated rate) and αb (the light limited slope), varied significantly among seasons and were highly positively correlated, with lowest values in the DSS and highest values in WSS. During deep mixing, Pbm did not covary with αb; and the light saturation index, Ek (=Pbmb), varied in response to changes in αb rather than in Pbm. Phytoplankton appeared to be nutrient deficient at all times but less deficient during deep vertical mixing in the DMS. Average daily rates of integrated phytoplankton primary productivity were lowest in the DSS (337 mg C m−2 d−1) and highest in the WSS (629 mg C m−2 d−1) despite nearly identical mean chlorophyll concentrations. Along a near shore transect off the Linthipe River, chlorophyll concentrations were higher and more variable (1.4 ± 1.3 μg L−1), phytoplankton were not strongly nutrient deficient and chlorophyll specific photosynthetic activity was as high or higher than at the offshore station. Estimates of phytoplankton productivity in this tropical great lake must account for spatial and temporal variability in photosynthetic parameters imposed by seasonal changes in mixing dynamics.  相似文献   

3.
Diporeia, formerly the dominant benthic macroinvertebrate in the Great Lakes, remains a keystone species in Lake Superior. Little is known, however, about fine scale amphipod distributions, especially as influenced by the production, transport and transformation of energy resources. Here, we document the distribution and abundance of Diporeia along 19 transects around the lake's perimeter. Regions of elevated density, averaging 958 ± 408 Diporeia/m2 (mean ± S.D.) were observed along all transects, typically within slope habitat (depth of 30–125 m). Waters shoreward (shelf habitat, < 30 m) and lakeward (profundal habitat, > 125 m) of these regions supported significantly lower densities, averaging 239 ± 178/m2 and 106 ± 59/m2, respectively. Amphipods within regions of elevated density, termed here the Ring of Fire, account for two-thirds of the lakewide population while occupying only one-quarter of the benthic habitat. The Ring of Fire, observed lakewide as a band averaging 14.2 ± 9.4 km in width, is characterized as a region of transitional sediment deposition with gentle slope, proximate to nearshore locations of elevated primary production. Within the Ring of Fire exceptionally high densities are found in the south central region, where the Keweenaw Current and slope bathymetries serve to funnel production from adjoining regions of high production. Density measurements for the 173 stations sampled here are used to estimate lakewide Diporeia standing stock (22.5–37.7 trillion individuals, 4.4–7.4 Gg dry weight, 2.1–3.5 Gg C), individual and biomass density (274–460/m2, 0.05–0.09 g DW/m2, 0.03–0.04 gC/m2) and areal (0.02–0.03 g C/m2/yr) and total (1.6–2.6 Gg C/yr) production.  相似文献   

4.
We conducted a probability-based net tow sampling of Lake Superior in 2006 and compared the zooplankton biomass estimate with an estimate from laser optical plankton counter (LOPC) surveys. The net survey consisted of 52 sites stratified across three depth zones (0–30, 30–150, > 150 m). The LOPC tow surveys were extensive and spatially covered much of Lake Superior (> 1300 km of towing). The LOPC was field calibrated to Lake Superior zooplankton samples collected across the years of 2004 to 2006. The volume-weighted lake-wide zooplankton biomass determined by traditional net tows to 100-m sample depth was 20.1 (± 7.8 SD n = 52) mg dry-weight m− 3. The estimates varied by depth zones within the lake, where nearshore (0–30 m) estimates were highest and highly variable. Net sites for the LOPC field calibration were removed to allow for LOPC validation with independent nets; the resulting net-based estimate 20.0 (± 9.3 SD n = 38) mg dry-weight m− 3 and LOPC lake-wide estimate 19.1 (± 3.3 SD) mg dry-weight m− 3 agreed well. Consistency across survey methods for lake-wide estimates suggested that LOPC survey data provides a comparable assessment tool to traditional nets for collecting zooplankton biomass data. We briefly compare our results with some observed historical patterns. Onshore–offshore trends in zooplankton biomass concentrations were similar to the last major lake-wide survey in 1973. The LOPC provided high resolution data on zooplankton biomass distribution. Using simultaneously collected in situ sensor data, the LOPC zooplankton biomass distributions over horizontal and vertical space can be modeled as a function of temperature and fluorescence.  相似文献   

5.
Three separate procedures were used to estimate the sediment oxygen demand (SOD) in the central basin of Lake Erie and were compared with other estimates determined previously and with historical data. First, whole core incubations involved sealing sediment cores at 12°C to ensure no interaction between the overlying water and the atmosphere and monitoring continuously to define the linear disappearance of oxygen. Second, sediment plugs were placed inside flow-through reactors and the influent and effluent concentrations were monitored to obtain steady-state reaction rates. Third, an extensive data set for the central basin of Lake Erie was compiled for input into the diagenetic BRNS model, and the SOD was calculated assuming all primary redox reactions, but no secondary reactions. All three procedures produced estimates of SOD that were in reasonable agreement with each other. Whole core incubations yield an average SOD of 7.40 × 10−12 moles/cm2/sec, the flow-through experiments had an average SOD of 4.04 × 10−12 moles/cm2/sec, and the BRNS model predicts an SOD of 7.87 × 10−12 moles/cm2/sec over the top 10 cm of sediment and appears to be calibrated reasonably well to the conditions of the central basin of Lake Erie. These values compare reasonably well with the 8.29 × 10−12 moles/cm2/sec obtained from diffusion modeling of oxygen profiles (Matisoff and Neeson 2005). In contrast, values reported from the 1960s to 1980s ranged from 10.5–32.1 × 10−12 moles/cm2/sec suggesting that the SOD of the central basin has decreased over the last 35 years, presumably, in response to the decrease in phosphorus loadings to Lake Erie. However, since hypoxia in the hypolimnion persists these results suggest that improvement in hypolimnetic oxygen concentrations may lag decreases in loadings or that the hypolimnion in the central basin of Lake Erie is simply too thin to avoid summer hypoxia during most years.  相似文献   

6.
Features of light absorption are critical to optical aspects of water quality and in regulating the signal available for remote sensing. Spectral characteristics and spatial patterns of light-absorbing components, and their relationships with optically active constituents, are documented for the Sturgeon River, Keweenaw Bay, and Lake Superior based on analyses of samples collected on two cruises (2006 and 2007, 20 sites). The absorption coefficient, a (m− 1), is partitioned according to the additive components (ax) of colored dissolved organic matter (aCDOM), non-algal particles (aNAP), phytoplankton (a?), and water itself (aw; known). The role of minerogenic particles and their iron content in regulating aNAP is evaluated based on paired measurements by an individual particle analysis technique (Peng et al., 2009), through empirical analyses and Mie theory calculations of absorption by these particles (am). Spectral characteristics of aNAP and a? were consistent with those reported for other case 2 (i.e., phytoplankton not dominant) systems. However, the slope values that describe aCDOM spectra for the bay and the lake were unusually low, suggesting an atypical composition for the lake's CDOM. The dominant absorbing component in the blue wavelengths was CDOM, representing ≥ 75% of a at a wavelength of 440 nm at all sites in the 2006 survey. A general gradient in both aCDOM and aNAP extended from the Sturgeon River, through the bay, into eastern Lake Superior in that survey. Relationships between ax and optically active constituents were within the broad ranges reported for other case 2 systems. Minerogenic particles, related to their iron content, are demonstrated to be an important component of aNAP.  相似文献   

7.
An 8 km2 area representative of deep offshore basins in Lake Superior was surveyed with multi-beam sonar and a high-frequency seismic-reflection system to create a high-resolution bathymetric map of the lake floor morphology, which is dominated by ring-shaped depressions attributed to the dewatering of glacial-lacustrine clays. Ten multi-cores were recovered from the survey area. The cores were scanned for magnetic susceptibility (MS), dated by 210Pb and analyzed for water content, total organic carbon (TOC) and nitrogen (TON), biogenic silica (BSi), and total (THg) and methyl (MeHg) mercury. MS profiles varied considerably, inferring substantial centennial-scale differences in sedimentation history among the core sites. Concentration profiles of the analyzed constituents displayed differences of about ± 15% TOC, ± 40% BSi, ± 50% THg and ± 50% MeHg. Total mercury and methylmercury concentrations were typical of past measurements, and the mean THg accumulation rate (12 μg/m2 year) was similar in magnitude to that of atmospheric Hg deposition. Sediment mass accumulation rates (MAR) ranged among the cores between average values of about 50 g/m2 year in the ring centers to as high as 180 g/m2 year between rings. Temporal variation in MAR within cores varied considerably on a decadal scale as well. Sediment redistribution by bottom currents over the complex morphology of the Lake Superior basin is not uniform in space and time, and indicates that a single core from any given area in the lake may not reflect the true history of environmental conditions that extend even a few hundred meters beyond the core site.  相似文献   

8.
Thirteen years of SeaWiFS data (1998–2010) from the early spring isothermal period (March–April) were used to determine trends of water attenuation coefficient (KdPAR), chlorophyll a (Chl a), Photosynthetic Available Radiation (PAR), and modeled primary production in southern Lake Michigan. Surface PAR values remained unchanged between 1998 and 2010, but there was an 18–22% drop in KdPAR during the March/April isothermal period as water clarity increased. This transparency increase was accompanied by a 41–53% decline in Chl a concentration (μg · L− 1) and a 42–46% decline in modeled primary production (Great Lakes Primary Production Model). These changes were most pronounced in 2001–2003 which coincided with the period of initial colonization of the quagga mussels. Statistically significant spatial differences were noted in Chl a (μg · L− 1) concentrations between mid-depth (z = 30–90 m deep), and offshore (z > 90 m deep) waters. Chl a concentrations in the mid-depth region (30–90 m) decreased at a higher rate compared to offshore waters (> 90 m) likely as a result of filtration activities of quagga mussel.  相似文献   

9.
We present the results from a study of the particulate scattering properties of three bodies of water that represent a wide range of optical properties found in inland waters. We found a positive linear relationship (R2 = 0.45, P < 0.005) between the mass-specific scattering coefficient at 532 nm (bp*(532)) and the ratio of the inorganic suspended material (ISM) to the total suspended material (TSM) in our study areas. In contrast to earlier studies in which bp*(532) was lower for inorganic particles than for organic particles, we found that the value of bp*(532) for ISM (bp*(532)ISM = 0.71 m2/g) was approximately 1.6 times greater than the value found for organic suspended materials (OSM) (bp*(532)OSM = 0.45 m2/g). We found that the dependence of the particle scattering coefficient (bp) on wavelength (λ) could be described accurately by a power law (with mean average percent error (MAPE) < 0.07) in waters dominated by inorganic particles. The model errors in waters dominated by organic particles, however, were much larger (MAPE > 0.1), especially in the spectral region associated with strong phytoplankton absorption. The errors could be reduced over this wavelength range by adding a term to the model to account for particle absorption, but the additional term tended to increase the error outside of this range. We conclude that information about the nature of the scattering particles in lake waters is necessary for the selection of an appropriate model for particle absorption and that a hybrid model that includes absorption over some wavelength ranges may be necessary.  相似文献   

10.
Stratification restricts habitable areas forcing fish to balance between favourable temperature and minimum dissolved oxygen requirements. Acoustic surveys conducted during the stratified and isothermal periods on tropical Lake Victoria indicated that stratification of temperature and dissolved oxygen (DO) affected vertical distribution of Nile perch. There was higher mean temperature (25.6 ± 0.5 °C) and lower DO (6.4 ± 1.8 mg/l) during stratified period compared to the isothermal period (mean temperature 24.9 ± 0.3 °C; mean DO 7.3 ± 0.6 mg/l). Higher mean densities of Nile perch were recorded in the coastal (0.44 ± 0.03) and deep (0.27 ± 0.02 g/m3) strata during the stratified compared to the isothermal season (coastal: 0.24 ± 0.01; deep: 0.12 ± 0.02 g/m3). In addition, Nile perch density in the upper 0–40 m depth layers in the coastal and deep strata increased by over 50% from the isothermal to the stratified season. Daily landings from 65 motorised fishing boats between October 2008 and September 2010 show higher mean catch (26.29 ± 0.17 kg/boat/day) during stratified compared to the isothermal (23.59 ± 0.15) season. Thermal stratification apparently compresses the habitat available to Nile perch and can potentially result in higher exploitation. Managers should evaluate the potential benefits of instituting closed seasons during the stratified period, and stock assessment models should take into account the seasonal niche compression.  相似文献   

11.
Phytoplankton growth dynamics in offshore Lake Erie during mid-winter   总被引:1,自引:0,他引:1  
The phytoplankton community in offshore Lake Erie in mid-winter was active but little net growth was occurring which suggests that high reported accumulations of phytoplankton in this lake in February are likely the product of previous bloom conditions. We measured phytoplankton dynamics as size-specific growth and loss rates of phytoplankton using dilution assays and antibiotic assays in ice-covered offshore waters of Lake Erie during the mid-winter period in 2008, 2009, and 2010. Total chlorophyll-a specific rates (average ± standard deviation) measured using dilution assays for growth ([0.72 ± 0.35/d]) and loss ([0.98 ± 0.36/d]) were closely matched. Growth and loss rates of picocyanobacteria determined using an antibiotic technique ranged from − 0.10 to 1.22/d and − 0.11 to − 2.35/d, respectively. The results indicate a trend of higher grazing rate than growth rate but that this difference is not significantly different from zero, suggesting a state of phytoplankton population size equilibrium at this time of year in the waters sampled.  相似文献   

12.
Drowned river mouth lakes are major features of coastal Great Lakes habitats and may influence nutrient and organic matter contributions from watersheds to near shore coastal zones. In May through October 2003, we measured loads of nutrients, surficial sediment, and seston to track the delivery of riverine-derived materials from the lower Muskegon River Watershed (MRW) into the near shore area of southeast Lake Michigan. Nutrient flux data indicated that seasonal loads of 1800 metric tons (MT) of particulate organic carbon, 3400 MT of dissolved organic carbon, and 24 MT of total phosphorus were discharged from the lower Muskegon River, with approximately 33% of TP load and 53% of the POC load intercepted within the drowned river mouth terminus, Muskegon Lake. Carbon: phosphorus molar ratios of seston in Muskegon River (C:P = 187) and Muskegon Lake (C:P = 176) were lower than in Lake Michigan (C:P = 334), indicating phosphorus limitation of phytoplankton in near shore Lake Michigan. Isotopic signatures of seston collected in Muskegon Lake were depleted in δ13C (− 30.8 ± 1.6‰) relative to the isotope signatures of seston from Lake Michigan (− 26.2 ± 1.3‰) or the mouth of the Muskegon River (− 28.1 ± 0.5‰), likely due to the presence of biogenic methane in Muskegon Lake. Seston δ15N increased on a strong east-to-west gradient within Muskegon Lake, indicating significant microbial processing of nutrients. The extent of nutrient uptake in Muskegon Lake altered the chemical and isotopic characterization of seston flowing into Lake Michigan from Muskegon River.  相似文献   

13.
Groundwater was measured 70 times in two years at 10 sites as it flowed 50 m over an accumulation of travertine (CaCO3) before reaching the Mad River. At source, the groundwater was relatively cool (6.77 ± 2.89 °C), slightly acidic ( pH 6.86 ± 0.22), and had a moderately high specific conductivity (606 ± 51 μS). Degassing was assessed from increases in pH, and CaCO3 deposition was assessed from decreasing conductivity. After flowing over the experimental site, degassing had increased pH to 8.04 ± 0.16 (P < 0.001), which was similar to river water (pH 8.07 ± 0.30). Concurrently, CaCO3 deposition decreased conductivity to 577 ± 43 μS (P < 0.001) but this was still higher (P < 0.001) than river water (494 ± 72). Seasonal changes in air temperature affected the rate of degassing. The pH was correlated with air temperature (r = 0.15, P < 0.001) while conductivity was correlated with pH (r = − 0.27, P < 0.001), but no direct relationship of air temperature with conductivity was detected. Groundwater entering the river after atmospheric exposure had a fairly constant temperature (7.05 ± 1.22 °C) despite seasonal changes in air temperature, thus warming the river in winter (up to day 100 and after day 300) and cooling it in summer (from days 140 to 260). Degassing and CaCO3 deposition in springs without travertine was similar to that observed in the study stream over travertine. These groundwater inflows provide favorable pH and temperature conditions for brook trout.  相似文献   

14.
Animals can influence the structure of an ecosystem by changing the levels of nutrient input. This is of particular importance for the islands of western Lake Erie, which are relatively nutrient poor, but have experienced increases in nutrient input from growing double-crested cormorant (Phalacrocorax auritus) populations. The objectives of this study were to evaluate changes in soil characteristics (nutrients [nitrate (NO3), total P], pH, and δ13C [as a tracer of cormorant-associated nutrients]) across a gradient of cormorant nest density on two islands (Middle and East Sister) in western Lake Erie. For both islands, soil pH decreased and P concentrations increased with nest density. On Middle Island, soil nitrate concentrations increased with cormorant nest density, and varied with breeding phenology, with highest concentrations during the early and mid nesting season (272 ± 19 μg g− 1) and lowest concentrations late in the season (165 ± 11 μg g− 1). Following a 3-year absence of nesting activity at sites on Middle Island, soil nitrate concentrations were similar to those at low density sites. In contrast, nitrate concentrations measured on East Sister Island did not correlate with temporal or spatial patterns of cormorant nesting and remained elevated 10 years post-cormorant use. While the results of this study confirm that chronic input of allochthonous materials alters soil properties of these islands, the unique conditions of each island must be considered when predicting ecological effects and setting long-term management objectives.  相似文献   

15.
The magnitude of angler harvest (kg·ha− 1·yr− 1) and cormorant consumption (kg·ha− 1·yr− 1) were compared for a set of lakes (N = 11) on Manitoulin Island. Empirical models relating total phosphorus to total fish production as well as production to body mass were used to scope the possible range of fish production and to partition production among small, medium and large size segments of fish populations, respectively. Medium (66–112 g) and large (> 200 g) size segments were defined as size categories targeted by cormorants (stomach diet analysis) and anglers (creel interviews), respectively. Angling effort and cormorant density were estimated from aerial surveys of the lake set during the open water season and for anglers during the winter ice-fishing season. Results showed that anglers harvested almost all large fish production, assuming the mean total fish production model, and 43% of large fish production under the more optimistic upper 80% prediction limit of total fish production. Cormorant consumption of medium fish production was less (39% using mean regression model; 15% using upper 80% prediction model) than angler consumption of large fish production. Anglers therefore imposed more population stress on their preferred sizes of fish than cormorants imposed on their preferred sizes of fish. Population stress was increased when cormorant consumption of medium size fish was discounted from contributing to large fish production. Angler harvest near (or above) sustainable yield levels will be exacerbated and appear as a fish collapse when cormorants consume fish production destined for fish size segments preferred by anglers.  相似文献   

16.
The passage of Kelvin waves in Lake Geneva after strong wind events was experimentally investigated in 1987 and 2002 using thermistor chains, current meters and Acoustic Doppler Current Profilers (ADCP) probing the whole water column, including the bottom boundary layer. Characteristics of these internal waves such as period, amplitude, exponential decay with distance from the shore and damping were determined. A significant increase of shear was observed in the thermocline region during the passage of a Kelvin wave crest. The passage of a Kelvin wave crest also led to a well-mixed bottom boundary layer characterized by a logarithmic velocity profile, complying with the so-called “law of the wall” up to an average height of 11 m. A bottom drag coefficient of 2.5 × 10− 3 was determined from our measurements. We estimated that ~ 70% of the Kelvin wave energy is dissipated in the bottom boundary layer. This study shows that the passage of Kelvin waves energizes the thermocline and near bed region and that this process is of fundamental importance in the dynamics of the nearshore region of mid-latitude large lakes.  相似文献   

17.
We report on the emergence of the potentially toxic filamentous cyanobacterium, Lyngbya wollei as a nuisance species in western Lake Erie. The first indication of heavy L. wollei growth along the lake bottom occurred in September 2006, when a storm deposited large mats of L. wollei in coves along the south shore of Maumee Bay. These mats remained intact over winter and new growth was observed along the margins in April 2007. Mats ranged in thickness from 0.2 to 1.2 m and we estimated that one 100-m stretch of shoreline along the southern shore of Maumee Bay was covered with approximately 200 metric tons of L. wollei. Nearshore surveys conducted in July 2008 revealed greatest benthic L. wollei biomass (591 g/m2 ± 361 g/m2 fresh weight) in Maumee Bay at depth contours between 1.5 and 3.5 m corresponding to benthic irradiance of approximately 4.0–0.05% of surface irradiance and sand/crushed dreissenid mussel shell-type substrate. A shoreline survey indicated a generally decreasing prevalence of shoreline L. wollei mats with distance from Maumee Bay. Surveys of nearshore benthic areas outside of Maumee Bay revealed substantial L. wollei beds north along the Michigan shoreline, but very little L wollei growth to the east along the Ohio shoreline.  相似文献   

18.
We propose a radiometric chronology bracket for the last glacial advance/retreat, called the Marquette readvance, in the Upper Peninsula of Michigan (Upper Peninsula) using organic material from kettle lakes and previously published age determinations on wood buried by glaciofluvial sediments. The lakes are located both inside and outside the ice-contact margin of the Marquette readvance. Wood buried in glaciofluvial sediments from the Marquette readvance was previously dated at 10,025 ± 100 14C yr BP (Hughes and Merry 1978, Lowell et al. 1999, and Pregitzer et al. 2000). Ackerman Lake, a kettle lake located inside the ice-contact margin, yielded a basal radiocarbon date of 9,495 ± 70 14C yr BP representing the time of organic accumulation after ice retreat. These dates above and below the glacial deposit bracket the age of the Marquette readvance/retreat to 360–700 14C yr, or the midpoint of 530 14C yr. Ackerman Lake yielded multiple radiocarbon dates, including an average date of 8,811 ± 11 14C yr BP (9,736–9,913 cal yr BP) at a change in stratigraphy from red clay to gray silt. This transition along the northern Upper Peninsula is interpreted to represent ice sheet retreat into Lake Superior and the reworking of older glacial sediments by ∼8,500 14C yr BP. Organic material from the kettle lake sediments spanning multiple geomorphic locations (both inside and outside of the ice-contact margin) and previous radiocarbon dates from the entire Upper Peninsula yielded dates concentrating around 9,500 14C yr BP. We attribute this synchronous organic accumulation in the Upper Peninsula to be a result of climatic signature corresponding with the Preboreal Oscillation, so the duration of the Marquette glacial cover may have been less then implied by the Ackerman Lake basal age.  相似文献   

19.
Nitrification is an oxygen consumptive process, consuming 2 mol of oxygen per mol of ammonium oxidized. Hypolimnion and sediment samples were collected during the summers of 2008–2010 in Lake Erie to determine the total oxygen consumption and oxygen consumption from nitrification by blocking nitrification with selective inhibitors. Oxygen consumption by nitrification in the hypolimnion was 3.7 ± 2.9 (mean ± 1 SD) μmol O2/L/d, with nitrification accounting for 32.6 ± 22.1% of the total oxygen consumption. Nitrification in the hypolimnion contributed more to oxygen consumption in the eastern sites than western sites and was lowest in September. The nitrification rate did not correlate with environmental factors such as oxygen, nitrate or ammonium, or nitrifier numbers. Oxygen consumption by nitrification in sediment slurries was 7.1 ± 5.8 μmol O2/g/d, with nitrification accounting for 27.0 ± 19.2% of the total oxygen consumption with the lowest rates in July and the lowest percentages in June. Oxygen consumption by nitrification in intact sediment cores was 682 ± 61.1 μmol O2/m/d with nitrification accounting for 30.4 ± 10.7% of the total oxygen consumption. Nitrification rates in intact cores were generally highest in September. The proportion of oxygen consumed by nitrification corresponds closely with what would be predicted from complete oxidation of a Redfield molecule (23%). While nitrification is unlikely to be the dominant oxygen consumptive process, the rates observed in Lake Erie were sufficient to theoretically deplete a large portion of the hypolimnetic oxygen pool during the stratified period.  相似文献   

20.
Water column primary production is a major term in the organic carbon cycle, particularly in large lakes with relatively reduced shoreline and near-shore influence. Presently, there is a large imbalance in the known inputs vs. outputs of organic carbon in Lake Superior. This study examined primary production in offshore Lake Superior using in situ incubations over a range of conditions representing an annual cycle. Primary producers were dominated by small (< 20 μm) cells and included a relatively large abundance of small, spherical flagellates. During conditions with a warm surface layer, chlorophyll concentrations were two- to three-fold higher within the deep chlorophyll maximum (DCM) than at the surface. Volumetric production (mass L− 1 d− 1) was maximal at 2-10 m depth, well above the typical DCM depth. On average, 22% of 14C label appeared in the dissolved pool at the end of the incubation period with the rest appearing in GF/F-strained particles. A statistical model for volumetric production explained 93% of the variance in individual measurements for depths > 2 m, using temperature and light as predictors. This model was applied to annual fields of temperature and light, and a new estimate for whole-lake annual primary production, 9.73 Tg y− 1, was derived. This combination of new measurements and modeling results brings the organic carbon cycle of Lake Superior closer to being balanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号