首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The spread of nonindigenous species (NIS) over land and via interconnecting water bodies is threatening aquatic ecosystems worldwide. This study examines the invasion of the first known NIS zooplankter, Eubosmina coregoni, into Lake Winnipeg, Manitoba, Canada. Analyses of cladoceran microfossils from a sediment core collected in the North Basin of the lake indicate this species first appeared in sediments dated to the late 1980s. An increase in total cladoceran accumulation rates coupled with increasing N, C, P, and chlorophyll a over the last 40 years provides evidence of eutrophication. Extant samples from fall 2002-2005 indicate that E. coregoni is mainly restricted to the North Basin while Bosmina longirostris is present throughout the lake. Results from this study provide baseline data regarding the invasion and establishment of E. coregoni, a precursor to future NIS that may have substantial ecological and economic impacts on the Lake Winnipeg ecosystem.  相似文献   

2.
Lake whitefish (Coregonus clupeaformis Mitchill), an important commercial species in the Laurentian Great Lakes, have experienced decreased growth and condition in regions of the upper Great Lakes over the past 20 years. Increases in lake whitefish density and decreases in the density of Diporeia spp., an energy rich and historically important part of the lake whitefish diet, have been implicated in the recent declines in lake whitefish growth and condition. The goal of this study was to describe lake whitefish fecundity, egg lipid content, and total ovary lipid content in selected regions of Lakes Huron, Michigan, and Superior in 1986–87 and 2003–05, two time periods with different lake whitefish and Diporeia densities. Under conditions of high lake whitefish density and low Diporeia density, female lake whitefish in the upper Laurentian Great Lakes generally produced fewer eggs. Egg lipid content was higher in 2003–05 than in 1986–87 at all sites, regardless of changes in lake whitefish or Diporeia densities. Total ovary lipid content and lake whitefish abundance were inversely related, while there was no significant relationship between total ovary lipid content and Diporeia density. The amount of energy that lake whitefish invested in egg production was more closely associated with lake whitefish abundance than with Diporeia density. This study provides evidence that recent changes in production dynamics of Great Lakes lake whitefish have not been driven solely by declines in Diporeia but have been significantly influenced by lake whitefish abundance.  相似文献   

3.
An aerial distance sampling survey of double-crested cormorants (Phalacrocorax auritus) was conducted in the northern region of Lake Huron (North Channel; four largest lakes of Manitoulin Island; South Shore of Manitoulin Is. facing the main body of the lake) to assess the relative distribution, abundance and prey demand by cormorants on inland lake vs. coastal habitat. On a per area basis, the density (approx. 1-2 cormorants ? km− 2) and prey demand (approx. 1.2 kg ha− 1) of cormorants in the four inland lakes matched that of the North Channel. The South Shore had approximately half the density and prey demand as the other two areas. Cormorants on the inland lakes of Manitoulin Island represented 13% early in the season and a high of 33% of the total population for this region of Lake Huron later in the summer. Estimating regional distributions of cormorants within the Great Lakes basin is important because mapped nest colonies and nest counts are not representative of the actual distribution of foraging cormorants during and after the nesting season. There are two general conclusions to emerge from this survey. First, aquatic productivity from both Great Lakes coast and inland lakes contributes to trends in population and distribution of cormorants in the northern region of Lake Huron and perhaps elsewhere. Second, inland aquatic ecosystems are important throughout a season for foraging cormorants from the Great Lakes and may become more important as Great Lake productivity trends downward.  相似文献   

4.
Hemimysis anomala (Crustacea, Mysidae) is a recent invader to North America that until now was reported only from the Laurentian Great Lakes and their immediate embayments, along with the St. Lawrence River. In August 2009, we identified Hemimysis in diets of white perch and yellow perch in Oneida Lake, NY. Night time vertical plankton net tows detected Hemimysis at four sites across the lake. Hemimysis in fish diets (5.5–8.6 mm) were larger than in net tows (2.2–7.0 mm) and reproduction is occurring as some females had brood sacs. This is the first documented introduction of Hemimysis to an inland lake in North America, outside the Great Lakes. Oneida Lake is located 53 river km upstream from Lake Ontario, the nearest known source of Hemimysis. No genetic differences were found between Hemimysis in Oneida Lake and Lake Ontario, indicating this is likely the source of introduction. Several large rapids, locks, and dams separate the two lakes, and as a result the most likely vector of introduction to Oneida Lake is pleasure boat or light commercial traffic via the canal system or overland transport. The presence of Hemimysis in Oneida Lake 3 years after it was first found in Lake Ontario suggests this species may spread rapidly throughout the basin. Despite an intensive monitoring program on Oneida Lake directed at fish, zooplankton, and limnology, Hemimysis was only detected in fish diets and night time zooplankton tows, indicating it may go undetected in lakes for some time using traditional daytime net tows.  相似文献   

5.
Lake whitefish (Coregonus clupeaformis) have been widely studied across the Laurentian Great Lakes. However, there are major gaps in our understanding of factors that affect larval distribution and abundance. The goal of this study was to investigate the distribution and abundance of larval lake whitefish in a Great Lakes embayment using Stokes Bay, Lake Huron as a case study. We collected plankton samples and environmental data from mid-spring to early summer during 2011 and 2012. Ichthyoplankton tows in 2011 revealed densities that are among the highest to be reported in Great Lakes studies. Overall there was little relationship between environmental variables (temperature, dissolved oxygen, conductivity, and depth) and larval lake whitefish distribution and abundance. Ichthyoplankton tows in 2012 revealed a virtual absence of larval lake whitefish during the entire sampling season; unseasonably warm conditions during spring 2012 likely had an important effect on larval survival.  相似文献   

6.
Populations of the benthic amphipod Diporeia spp. have sharply declined since the early 1990s in all North America's Great Lakes except Lake Superior. The onset and continued decline coincides with the invasion of these lakes by zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels and the spread of quagga mussels to deep habitats. The six deepest Finger Lakes of central New York (Seneca, Cayuga, Skaneateles, Canandaigua, Keuka, and Owasco) have historically been Diporeia habitat and have had dreissenids for more than a decade. These lakes represent a wide range of trophic state, maximum depth, and dreissenid invasion history. We hypothesized that Diporeia abundance would be negatively impacted by dreissenid mussel expansion in the Finger Lakes. During 2006–2010, we sampled Diporeia and mussel populations in these six lakes. Diporeia was present in all six lakes, and was abundant (2000/m2) in Owasco Lake that has only zebra mussels and in Cayuga and Seneca Lakes that have had zebra and quagga mussels since 1994. Diporeia abundance was lowest (1000/m2) in Skaneateles, Canandaigua, and Keuka Lakes where quagga mussels have recently expanded. Productivity indicators explained much of the variability of Diporeia abundance. The persistence of Diporeia with quagga mussels in these lakes may be because of available alternative food resources. Fatty acid tracers indicate that Diporeia from Owasco Lake, the lake without quagga mussels, utilize diatoms, but Diporeia from Cayuga Lake that coexist with abundant quagga mussels also use food resources associated with terrestrial detritus that cannot be intercepted by dreissenids.  相似文献   

7.
Crayfish represent important links in aquatic food webs because they have diverse, omnivorous diets and are an important source of energy for fishes and birds. Crayfish have the ability to increase sediment transport through bioturbation, some are considered ecosystem engineers due to their burrowing habits, and crayfish invasions have been linked to large declines in biodiversity and changes in ecosystem structure and function. Despite their ecological importance and the threats that invasive crayfishes pose, the distribution of crayfishes in the Laurentian Great Lakes is not well studied. Here, we report on four years of intensive crayfish surveys in the southwestern portion of the Lake Michigan Basin, a region with diverse freshwater ecosystems and few previous records of crayfish distribution. From 2015 to 2018, baited minnow traps and SCUBA were used to document the distribution and abundance of crayfish across streams, rivers, inland lakes, and Lake Michigan. Six species of crayfish were captured, including two invasive species. The invaders are the widely distributed and abundant Faxonius rusticus (rusty crayfish) and Procambarus clarkii (red Swamp crayfish), a species early in the invasion phase. Native species were found in fewer habitat types and were less abundant than invasive F. rusticus. Comparing our results to previous sampling showed that native crayfish distribution and diversity have declined at the same time that F. rusticus has spread over recent decades. There is potential for new and recently introduced invaders, such as the red swamp crayfish, to further alter ecosystems.  相似文献   

8.
Despite increasing recognition of the importance of invertebrates, and specifically crayfish, to nearshore food webs in the Laurentian Great Lakes, past and present ecological studies in the Great Lakes have predominantly focused on fishes. Using data from many sources, we provide a summary of crayfish diversity and distribution throughout the Great Lakes from 1882 to 2008 for 1456 locations where crayfish have been surveyed. Sampling effort was greatest in Lake Michigan, followed by lakes Huron, Erie, Superior, and Ontario. A total of 13 crayfish species occur in the lakes, with Lake Erie having the greatest diversity (n = 11) and Lake Superior having the least (n = 5). Five crayfish species are non-native to one or more lakes. Because Orconectes rusticus was the most widely distributed non-native species and is associated with known negative impacts, we assessed its spread throughout the Great Lakes. Although O. rusticus has been found for over 100 years in Lake Erie, its spread there has been relatively slow compared to that in lakes Michigan and Huron, where it has spread most rapidly since the 1990s and 2000, respectively. O. rusticus has been found in both lakes Superior and Ontario for 22 and 37 years, respectively, and has expanded little in either lake. Our broad spatial and temporal assessment of crayfish diversity and distribution provides a baseline for future nearshore ecological studies, and for future management efforts to restore native crayfish and limit non-native introductions and their impact on food web interactions.  相似文献   

9.
Non-native rusty crayfish are abundant egg predators on spawning reef habitats for lake trout and coregonines in northern Lake Michigan. To better understand rusty crayfish life-history on these unique habitats, we conducted monitoring in 2012 and 2013 at four locations previously identified as spawning areas for native fish. With the aid of a graphical causal model, we conducted an exploratory statistical analysis using a Bayesian multilevel modeling approach with model selection based on information criteria to identify important environmental variables for predicting rusty crayfish distribution and abundance on spawning reefs. We also compared seasonal trends in relative abundance, inferred from catch-per-unit-effort calculations from trapping, to previously reported accounts from a smaller inland lake. The results from our modeling provide evidence of size-class segregation across subtle changes in habitat characteristics of spawning reefs. Specifically, we found evidence that the distribution of >30 mm rusty crayfish was only weakly related to rock density (#/m2) relative to juveniles and smaller size classes. We also observed highest relative abundances from minnow trap monitoring in mid-October when water temperatures averaged 13.9 °C, which is later in the year and at cooler temperatures than similar monitoring from smaller inland lakes has reported. We hypothesize that unique environmental conditions elicit novel life-history responses from rusty crayfish on Lake Michigan spawning reefs and discuss our findings in the context of native fish restoration in the Laurentian Great Lakes.  相似文献   

10.
Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.  相似文献   

11.
Management of a widely distributed species can be a challenge when management priorities, resource status, and assessment methods vary across jurisdictions. For example, restoration and preservation of coregonine species diversity is a goal of management agencies across the Laurentian Great Lakes. However, management goals and the amount of information available varies across management units, making the focus for management efforts challenging to determine. Genetic data provide a spatially consistent means to assess diversity. Therefore, we examined the genetic stock structure of cisco (Coregonus artedi) in the Great Lakes where the species is still extant. Using genotype data from 17 microsatellite DNA loci, we observed low levels of population structure among collections with most contributions to overall diversity occurring among lakes. Cisco from lakes Superior, Michigan, Ontario, and the St. Marys River could be considered single genetic populations while distinct genetic populations were observed among samples from northern Lake Huron. Significant within-lake diversity in Lake Huron is supported by populations found in embayments in northern Lake Huron. The Grand Traverse Bay population in Lake Michigan represents a distinct population with reduced levels of genetic variation when compared to other lakes. The different levels of within lake population structure we observed will be important to consider as future lake-specific management plans are developed.  相似文献   

12.
The nonindigenous mottled fingernail clam, Eupera cubensis is reported from the Upper Mississippi River Basin for the first time. This record represents a significant northern range expansion for the species in the United States. It appears to be presently confined to a 35-km stretch of the Chicago Sanitary and Ship Canal (CSSC), an artificial waterway that connects the Mississippi River drainage to the Great Lakes. Although the introduction of this species to the Great Lakes basin poses uncertain risks to the general aquatic community, the immediate effects of Eupera cubensis on the fauna of the CSSC are expected to be minimal.  相似文献   

13.
Coastal wetlands in the Laurentian Great Lakes undergo frequent, sometimes dramatic, physical changes at varying spatial and temporal scales. Changes in lake levels and the juxtaposition of vegetation and open water greatly influence biota that use coastal wetlands. Several regional studies have shown that changes in vegetation and lake levels lead to predictable changes in the composition of coastal wetland bird communities. We report new findings of wetland bird community changes at a broader scale, covering the entire Great Lakes basin. Our results indicate that water extent and interspersion increased in coastal wetlands across the Great Lakes between low (2013) and high (2018) lake-level years, although variation in the magnitude of change occurred within and among lakes. Increases in water extent and interspersion resulted in a general increase in marsh-obligate and marsh-facultative bird species richness. Species like American bittern (Botaurus lentiginosus), common gallinule (Gallinula galeata), American coot (Fulica americana), sora (Porzana carolina), Virginia rail (Rallus limicola), and pied-billed grebe (Podilymbus podiceps) were significantly more abundant during high water years. Lakes Huron and Michigan showed the greatest increase in water extent and interspersion among the five Great Lakes while Lake Michigan showed the greatest increase in marsh-obligate bird species richness. These results reinforce the idea that effective management, restoration, and assessment of wetlands must account for fluctuations in lake levels. Although high lake levels generally provide the most favorable conditions for wetland bird species, variation in lake levels and bird species assemblages create ecosystems that are both spatially and temporally dynamic.  相似文献   

14.
Fish population structure in previously glaciated regions is often influenced by natural colonization processes and human-mediated dispersal, including fish stocking. Endemic populations are of conservation interest because they may contain rare and unique genetic variation. While coregonines are native to certain Michigan inland lakes, some were stocked with fish from Great Lakes sources, calling into question the origin of extant populations. While most stocking targeted lake whitefish (Coregonus clupeaformis), cisco (C. artedi) were also stocked from the Great Lakes to inland waterbodies. We used population genetic data (microsatellite genotypes and mitochondrial (mt)DNA sequences), coalescent modeling, and approximate Bayesian computation to investigate the origins of 12 inland Michigan cisco populations. The spatial distribution of mtDNA haplotypes suggests Michigan is an introgression zone for two ancestral cisco lineages associated with separate glacial refugia. Low levels of genetic diversity and high levels of genetic divergence were observed for populations located well inland of the Great Lakes relative to populations occupying waterbodies near the Great Lakes. Estimates of recent Great Lakes gene flow ranged from 27 to 48% for populations near the Great Lakes shoreline but were substantially lower (under 8%) for populations further inland. Inland lakes with elevated recent gene flow estimates may have been recipients of stocked coregonine fry, including cisco. Low levels of genetic diversity paired with a high likelihood of endemism as indicated by strong genetic divergence and low Great Lakes population inputs suggest the analyzed cisco populations occupying southern Michigan kettle lakes are of elevated conservation interest.  相似文献   

15.
Water-level fluctuations are critical for maintaining the diversity and resultant habitat value of wetland plant communities in the Laurentian Great Lakes. However, activation of the seed bank can also provide an opportunity for invasive species to displace native species, as occurred when common reed, Phragmites australis, expanded across many wetlands after lake levels receded following highs in 1997. Timing of the invasion process is not clear, however, as Phragmites propagules had to be present to exploit the exposed soils. A data set from Dickinson Island on the St. Clair River delta collected in 1988–1991, 1996 during a previous lake-level decline was analyzed to document prior Phragmites growth, as well as overall seed-bank response. Above-ground biomass was determined for all plants each year in randomly placed quadrats in a 5-ha area exposed when lake levels decreased by 0.65 m from 1986 to 1988. A total of 38 taxa were identified in 1988, but the number decreased, along with biomass of many species, as canopy-dominating Typha angustifolia and Phragmites increased in later years. Although Phragmites did not expand greatly until after the decline from the 1997 high, it likely inoculated the area with viable seed during the previous low. Because post-1997 lake levels were lower than those post-1986, they exposed a greater area for Phragmites colonization from seed; lake levels also remained low for a longer time. Differences in bathymetry below the 1986 and 1997 lake-level elevations likely played a role in greater post-1997 spatial expansion of Phragmites at other sites in the Great Lakes also. The next high lake level will likely be required to displace Phragmites, but the effect will be temporary.  相似文献   

16.
Changes in the crustacean zooplankton community composition and abundance in Lake Winnipeg (1969–2006) provide a rare opportunity to examine their response to environmental changes in the largest naturally eutrophic lake on the Canadian prairies. Since 1929, zooplankton species composition in Lake Winnipeg has changed little except for the addition of the invasive cladoceran, Eubosmina coregoni in 1994. The dominant taxa in the lake in summer include: Leptodiaptomus ashlandi, Acanthocyclops vernalis, Diacyclops thomasi, Daphnia retrocurva, Daphnia mendotae, Diaphanosoma birgei, Eubosmina coregoni, and Bosmina longirostris. Climate-accelerated nutrient loading to southern Lake Winnipeg over the last two decades has led to increased phytoplankton abundance and higher frequency of cyanobacterial blooms especially in its northern basin. Crustacean zooplankton have likewise increased especially in the North Basin, but less so in the more nutrient rich South Basin, possibly as a consequence of higher densities of pelagic planktivorous fish and light-limited primary production compared with the more transparent North basin (Brunskill et al., 1979, 1980). Calanoid copepods play a larger role in the South basin food web in contrast to cyclopoid copepods and Cladocera in the North basin. The study begins to fill the recognized gap in understanding of Lake Winnipeg's food web structure and provides a baseline for evaluating ongoing changes in the zooplankton community with the arrival of new non-indigenous taxa, e.g. Bythotrephes longimanus and Dreissena polymorpha. It reinforces previous work demonstrating that zooplankton provide valuable indices toward evaluating the health of an ecosystem.  相似文献   

17.
Though aquatic ecosystems (and the Laurentian Great Lakes in particular) have faced many stressors over the past century, including fisheries collapses and species invasions, rarely are data available to evaluate the long-term impacts of these stressors on food web structure. Stable isotopes of fish scales from the 1940s to the 2010s in South Bay, Lake Huron were used to quantify trophic position and resource utilization for fishes from offshore (alewife, cisco, lake trout, lake whitefish, rainbow smelt) and nearshore (rock bass, smallmouth bass, white sucker, yellow perch) habitats, providing one of the longest continuous characterizations of food webs in the Laurentian Great Lakes. Mean δ15N and δ13C values for each species were compared across twenty-year time periods. Using directional statistics, no significant community-wide changes were detected between time periods from 1947 to 1999. In contrast, a significant change was detected between 1980-1999 and 2000–2017, with all species showing increased reliance on nearshore resources. The increase in nearshore resource reliance for lake whitefish between these time periods was the greatest in magnitude compared with any other species between any two adjacent time periods. Besides lake whitefish, the increased reliance on nearshore resources was more pronounced for nearshore compared to offshore species. The timing of these shifts coincided with the invasion of dreissenid mussels and round goby, and declines in offshore productivity and prey densities. These results show the unprecedented magnitude of recent food-web change in Lake Huron after 50 years of relative stability.  相似文献   

18.
Harpacticoid copepods can be a substantial component of the meiobenthic community in lakes and serve an ecological role as detritivores. Here we present the first species-level lake-wide quantitative assessment of the harpacticoid assemblage of Lake Ontario with emphasis on the status of nonindigenous species. Additionally, we provide COI-5P sequences of harpacticoid taxa through Barcode of Life Data System (BOLD). Harpacticoids were collected at depths from 0.1 to 184 m and from a range of substrates from August to September 2018 as part of the Cooperative Science and Monitoring Initiative (CSMI) offshore benthic survey. Twenty-six meiobenthic samples were analyzed using microscopy for community composition analysis of harpacticoids. We found thirteen indigenous and three nonindigenous species of harpacticoid, with the introduced species dominating at shallow depths. The community transitioned from nonindigenous to indigenous species dominance as depth increased. Nonindigenous species accounted for 79% of the community (by abundance) at depths <20 m, 55% from 20 to 40 m, and only 24% at depths >40 m. The nonindigenous species encountered included the first detections of Schizopera borutzkyi (Monchenko, 1967) and Heteropsyllus nunni (Coull, 1975) from Lake Ontario. S. borutzkyi was the most abundant harpacticoid species in the lake, approaching a maximum density of 50,000/m2 and a lake-wide average density of 7,900/m2. Numerically important indigenous species included Bryocamptus nivalis (Willey, 1925), Canthocamptus robertcokeri (Wilson, 1958), Canthocamptus staphylinoides (Pearse, 1905), and Moraria cristata (Chappuis, 1929). The prevalence of nonindigenous harpacticoids in the meiobenthos of Lake Ontario suggests further investigations of Great Lakes meiofauna communities are warranted.  相似文献   

19.
Previously reported from Lakes Ontario and Michigan, the nonindigenous zooplankter Cercopagis pengoi was found for the first time in western Lake Erie, the Detroit River, and Muskegon Lake, Michigan, during summer 2001. A native of the Ponto-Caspian region, C. pengoi is currently expanding its range in North America. Analysis of mitochondrial gene ND5 sequences confirmed that the Lake Erie haplotype is identical to that reported previously from Lakes Ontario and Michigan and the Finger Lakes, New York. These findings support the hypothesis that C. pengoi's range expansion in the Great Lakes likely resulted from inter-lake transfer of ballast water, rather than from additional introductions from European locations. Pleasure-craft traffic operating between Lake Michigan and Muskegon Lake is likely responsible for this inland transfer of Cercopagis, a trend that likely will increase due to human activities.  相似文献   

20.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号